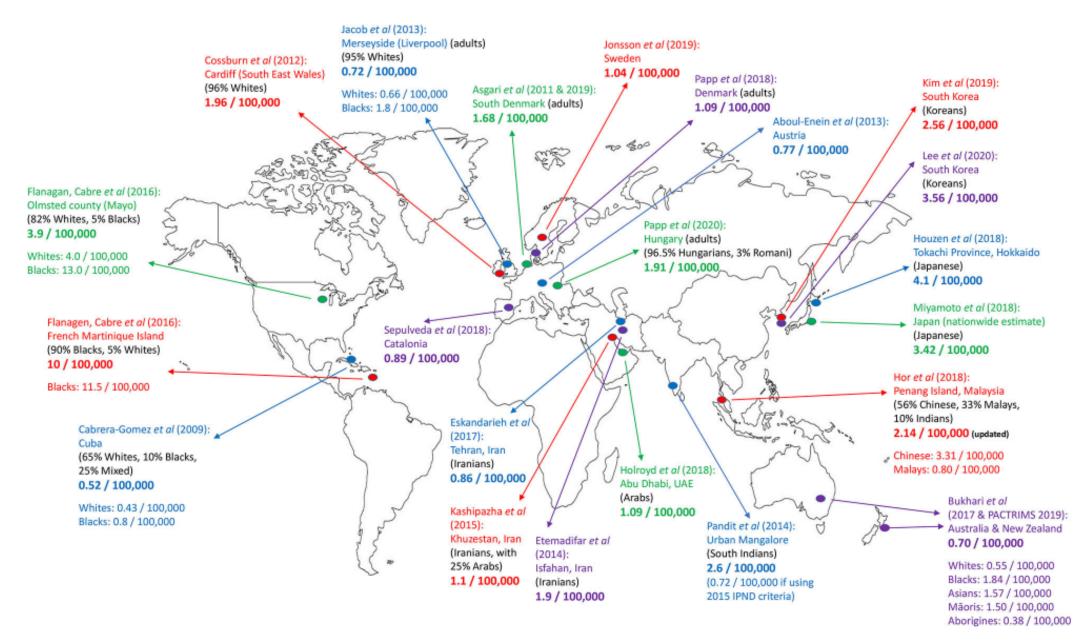

Update in NMOSD


Topic review in Neuroimmunology

23 May 2023 Oranuch Chuapakdee, MD

World Map Showing Population-Based Studies of NMOSD

Hor JY, Asgari N, Nakashima I, Broadley SA, Leite MI, Kissani N, et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Frontiers in Neurology. 2020;11

NMOSD in Thailand

Epidemiology and Burden of NMOSD, MS, and MOGAD in Thailand: a Population-Based Study

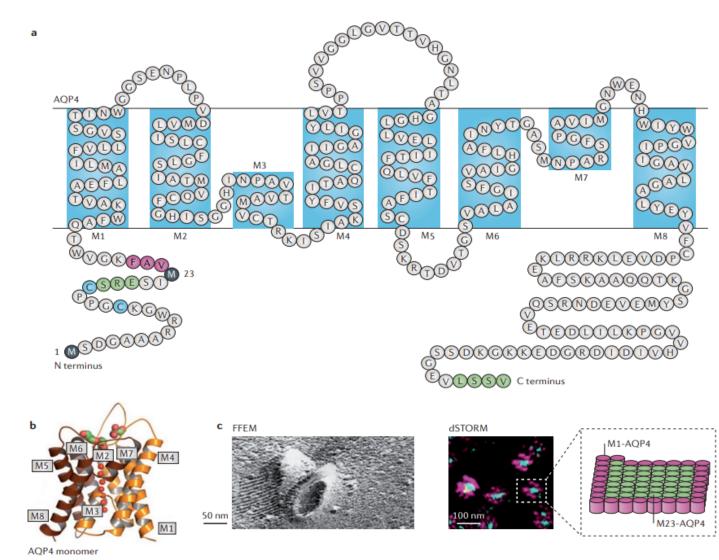
Nanthaya Tisavipat, Pornpong Jitpratoom, Sasitorn Siritho, Naraporn Prayoonwiwat, Metha Apiwattanakul, Natthapon Rattanathamsakul, Jiraporn Jitprapaikulsan

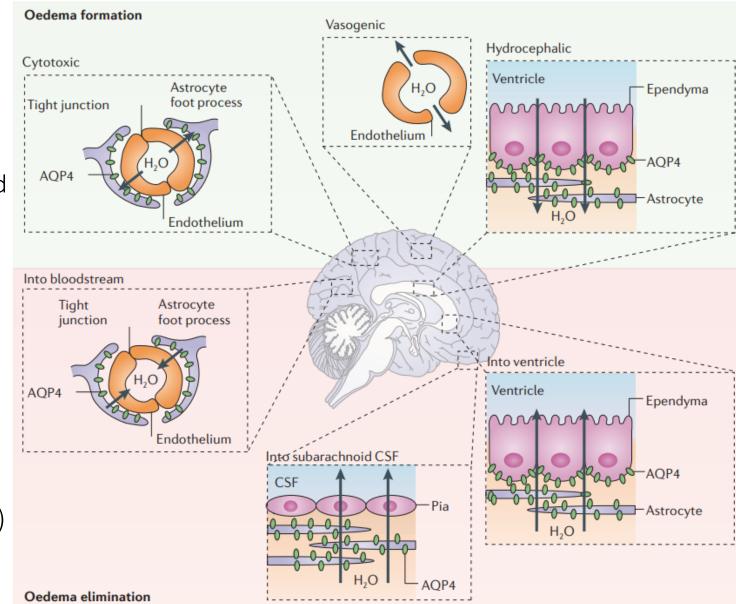
Objective

To determine cumulative incidence and point prevalence of neuromyelitis optica spectrum disorder (NMOSD), multiple sclerosis (MS), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) in Thailand using population-based data of Chumphon province.

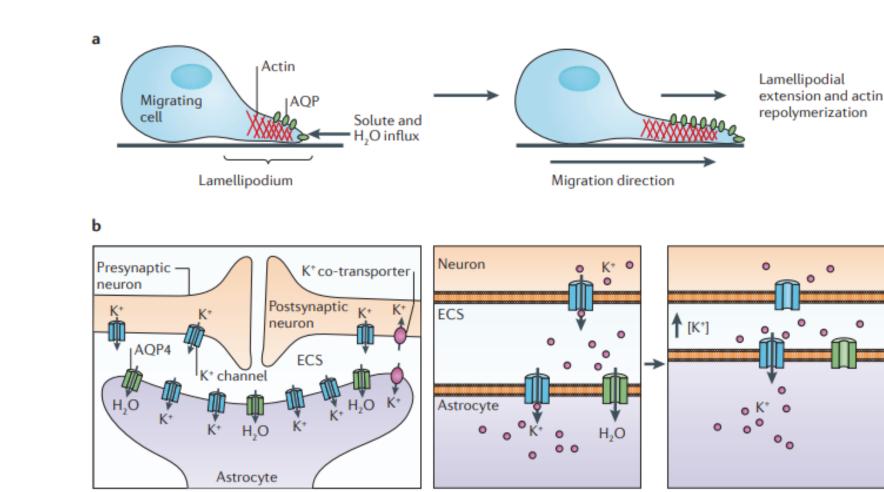
- Population-based study
- Searching for CNSIDD patients at a public secondary care hospital in Chumphon from January 2016 to December 2021 was performed using relevant ICD-10-CMcodes
- NMOSD was the most prevalent CNSIDD (CNS inflammatory demyelinating diseases) in adult Thai population at 3.33 per 100,000 persons (crude prevalence 2.55).

NMOSD


- Autoimmune aquaporinopathy
- East Asians: 3.5/100,000 Whites: 1/100,000 Blacks: range from 1.8 to 10/100,000
- Female : Male ratio = 9 : 1
- The median age of onset is 35–37 years but people of any age can be affected
- Coexisting autoimmune disease :HLA-DR B1*03:01(white), HLA-DPB1*05:01 (Asia)
- AQP4-IgG seropositivity is associated with a high risk of relapse after a first event of longitudinally extensive transverse myelitis4 and in those with single or recurrent optic neuritis
- A relapsing disease.
- Attacks are often severe and lead to disability as a result of cumulative sequelae of relapses


Papadopoulos MC Verkman AS Aquaporte water channels in the nervous system Nature Reviews Neuroscience 2013;14(4):265-77

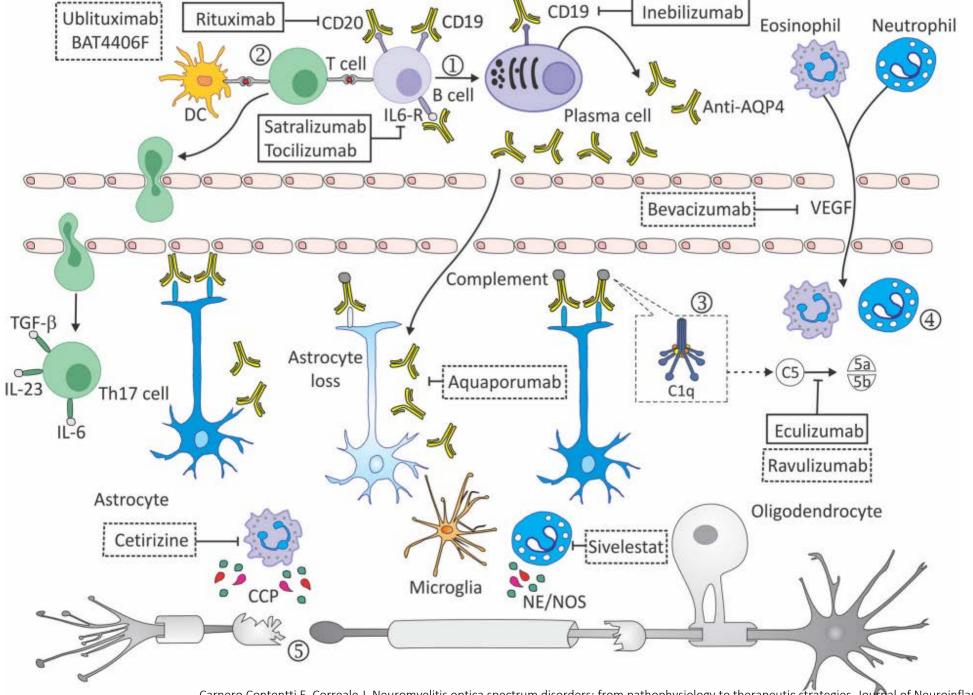
NMOSD


- AQP4 expression is high at the astrocytic foot process
- AQP4 structure
 - 2 isoforms = M1 (complete internalization), M23 (resist internalization)
 - Orthogonal arrays particle (OAP) formed by M23 isoform (only in CNS)
 - OAP for IgG and complement C1Q binding (CDCC)
 - Best assay = M23-isoform
- Antibodies in NMOSD (AQP4-IgG1)
 - Complement activation (CDC) MAC
 - Activation of effector cells (NK cell) Ab dependent cell-mediated cytotoxicity (ADCC)
 - Target internalization of the receptor
 - Modification of target function

- In cytotoxic edema
 - water enters the CNS AQP4 located in **perivascular astrocyte** foot processes.
- In <u>vasogenic edema</u>
 - CNS water entry is AQP4- independent and occurs through intercellular spaces.
- In hydrocephalic edema
 - water enters the brain through AQP4 in ependymal cells **and subependymal astrocytes**.
- Interstitial edema
 - astrocyte foot processes into the bloodstream,
 - subpial astrocyte processes and pial cells into subarachnoid cerebrospinal fluid (CSF)
 - subependymal astrocyte processes and ependyma into ventricle.

Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nature Reviews Neuroscience. 2013;14(4):265-77

• Role of AQP4


Ē

Neuroexcitation

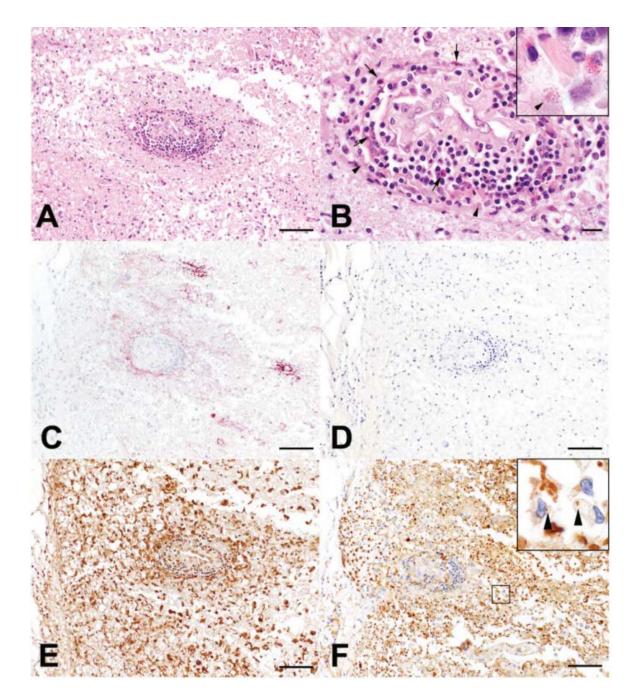
Early post-neuroexcitation

- Astrocyte migration
- Neuroexcitation outside the synaptic cleft: helping reuptake potassium and water by astrocytes → decrease extracellular space and volume
- Modulate function of EAAT2 on astrocyte (reuptake glutamate into astrocyte)

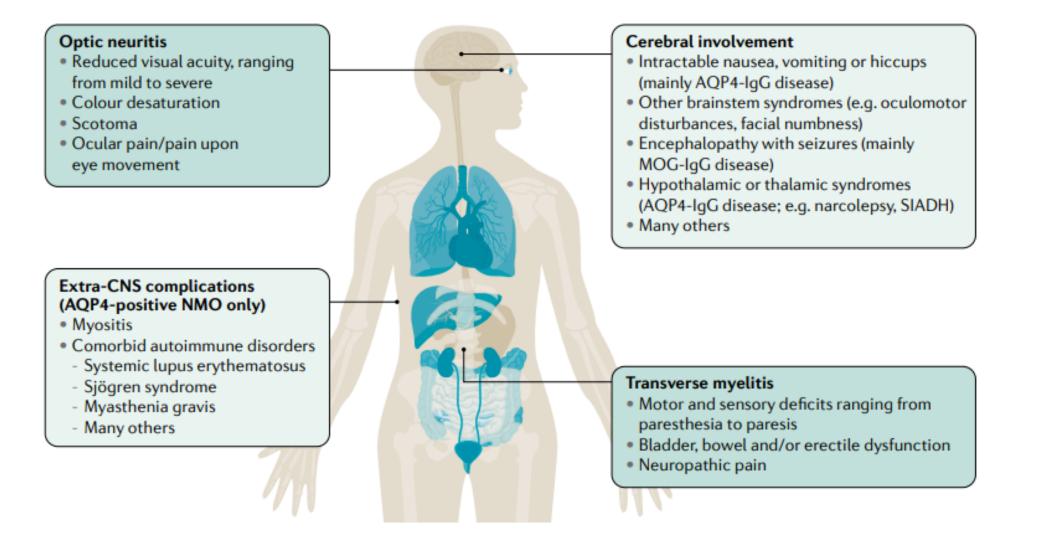

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

AUTOIMMUNE ASTROCYTOPATHIC DISEASE

- AQP4-expressing astrocyte is the major target of immune attack and astrocytic destruction
- 1. Extensive loss of AQP4 and GFAP immunostaining in the CNS lesions
 - In contrast, astrocyte destruction is not seen or minor at best in typical multiple sclerosis.
- 2. Remarkably high CSF-GFAP levels during relapse
 - CSF GFAP is not elevated at all in typical multiple sclerosis
- 3. Low myo-inositol/creatinine value in the cervical-cordon H-MRS
 - Myo-inositol detected by 1 H- magnetic resonance spectroscopy reflects proliferation and activity of astrocytes
 - The myo-inositol/creatine ratio is significantly lower in the cervical cord of AQP4-antibodyseropositive NMOSD than in multiple sclerosis
- 4. Pathogenicity of AQP4-antibody in experimental studies(in vitro and in Vivo)
- 5. Significantly reduced thickness of Muller cell-rich fovea on OCT
 - foveal change around Muller cell-rich fovea supports a retinal astrocytopathy


Pathology of NMOSD

- Demyelination involving both the gray and white matter (LFB/PAS)
- Macrophage/microglia infiltration.
- Severe axonal loss is present in some areas of the lesion (Bielschowsky's staining).
- loss of GFAP, AQP4 receptor and the glutamate transporter, EAAT2


Pathology of NMOSD

- Perivascular complement deposition (Rosette/mesh pattern)
- Lymphocyte and eosinophil perivascular infiltration with degranulation
- Complement deposition at perivascular region
- Active Demyelination
- Myelin laden macrophage

Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24(1):83-97.

Clinical Manifestation

Q1. Is the syndrome-specific biomarker for NMO, aquaporin-4 autoantibodies, present in patients with systemic rheumatologic diseases, and if so, is it confined to the group of patients who have optic neuritis or myelitis?

• Answer. a high proportion of cases of both NMO and NMO associated with rheumatologic diseases had aquaporin-4 autoantibodies and the frequency did not differ between these two groups

Q2. When myelitis occurs in a connective tissues disease, is it clinically, radiologically and pathologically similar to the myelitis seen in neuromyelitis optica?

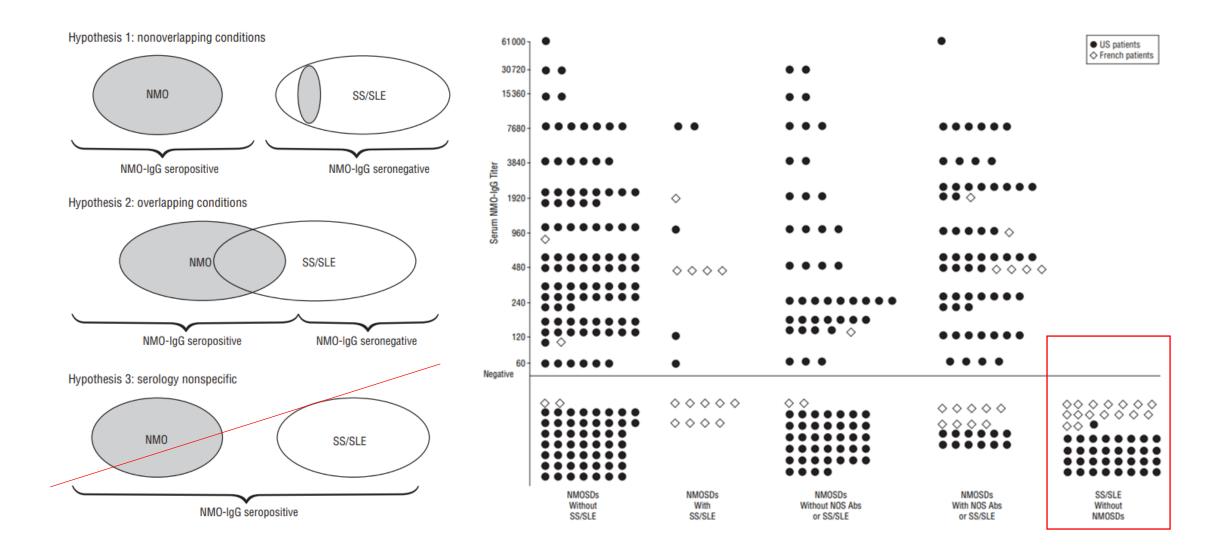
• Answer. no reported detailed immunopathological analyses of spinal cord lesions in patients with NMOSDs in the context of SS or SLE

NMOSD and Rheumatologic Disease

Q3. Do systemic rheumatologic disorders consistently or characteristically precede NMO, or can either one occur first?

• Answer. Not associated

Q4. Is NMO associated only with systemic rheumatologic disease that is associated with vasculitis or potential to produce CNS pathology, or can it be associated with other autoimmune disorders not otherwise associated with CNS tissue damage?


• Answer. Association with other systemic inflammatory diseases not associated with CNS pathology; autoimmune thyroid disease, celiac disease, MG

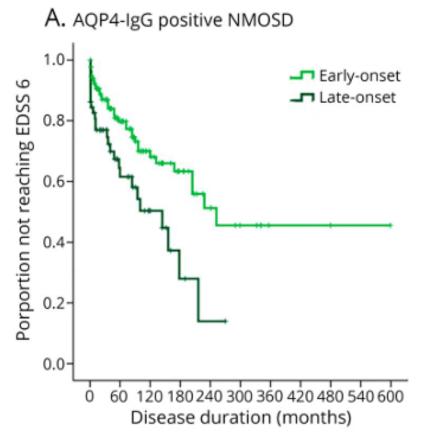
NMOSD and Rheumatologic Disease

- Patient with known rheumatologic disease of ON or LETM, should prompt evaluation for AQP4 antibody
- Patient with rheumatologic disease who develop recurrent episodes LETM/ON with 'signature NMOSD' MRI lesion patterns \rightarrow very likely to have NMO
- Patients with LETM/ON, without recognized rheumatologic disease who are found to have non-organ-specific autoantibodies (ANA) → more likely to have NMO > lupus myelitis
- The frequent use of immunosuppressive therapy for a previously diagnosed rheumatologic disease may suppress aquaporin-4 antibodies → follow up
- Rheumatologists and neurologists should avoid monoclonal antibody or fusion protein therapies that interfere with tumor necrosis factor-alpha function, including such as infliximab, adalimumab, or etanercept

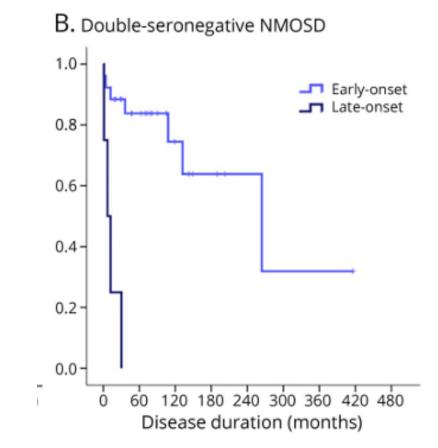
NMOSD and Rheumatologic Disease

Ę

Pittock SJ, Lennon VA, de Seze J, Vermersch P, Homburger HA, Wingerchuk DM, et al. Neuromyelitis optica and non organ-specific autoimmunity. Arch Neurol. 2008;65(1):78-83


	EO-NMOSD (n = 133)	LO-NMOSD (n = 60)	p Value
Female:male (ratio)	122:11 (11:1)	48:12 (4:1)	0.037
White ethnicity, n (%)	107 (80)	56 (93)	0.030
Age at onset, y, median, range	32 (10-49)	59 (50-84)	N/A
Coexisting autoimmune diseases, n (%)	25 (19)	20 (33)	0.049
Onset attack type, n (%)			
Optic neuritis	56 (42)	22 (37)	
Myelitis	50 (38)	28 (47)	0.488
Simultaneous ^a optic neuritis + myelitis	16 (12)	4 (7)	
Brainstem/brain	11 (8)	6 (10)	
EDSS score after first attack, median (range)	3.0 (1.0-8.0)	4.0 (1.0-8.5)	0.012
Monophasic course, n (%)	11 (8)	17 (29)	<0.001
Chronic treatment, n (%)	111 (85)	40 (69)	0.016
Follow-up, y, median (range)	7.1 (0.3-50.0)	4.5 (0.2-22.4)	0.011
Annualized relapse rate, mean (SD)	1.6 (3.6)	1.4 (2.3)	0.261
Time to first relapse, mo, median (95% CI)	9.5 (5.3–13.8)	19.5 (4.6–34.3)	0.106
Disability:			
Outcome reached at last follow-up			
Last EDSS score, median (range)	3.0 (0-9.0)	4.8 (1.0-9.5)	0.007
EDSS score ≥6.0, n (%)	40 (30)	26 (46)	0.045
EDSS score ≥8.0, n (%)	13 (10)	10 (18)	0.146
Visual acuity ^b ≤20/100, n (%)	31/107 (28)	15/35 (43)	0.148
Concomitant neoplasia, n (%)	2 (2)	8 (13)	0.004
Paraneoplastic NMOSD ¹⁷	1 (0.8)	4 (7)	0.033
Patients who died, n (%)	7 (5)	6 (10)	0.366

Late Onset NMOSD


- Disease onset ≥ 50years
- Type and frequency of initial attack not difference from early onset
- 31% of AQP4 positive NMOSD patient had LO- NMOSD
- Lower female : male ratio (11.1 vs 4.1)
- Coexisting autoimmune
- Higher EDSS after first attack and last follow up
- 7% diagnosed with paraneoplastic NMOSD
- Predictor of disability
 - Higher EDSS after first attack
 - ARR

Sepulveda M, Delgado-García G, Blanco Y, Sola-Valls N, Martinez-Lapiscina EH, Armangué T, et al. Late-onset neuromyelitis optica spectrum disorder: The importance of autoantibody serostatus. Neurol Neuroimmunol Neuroinflamm. 2019;6(6).

Late Onset NMOSD

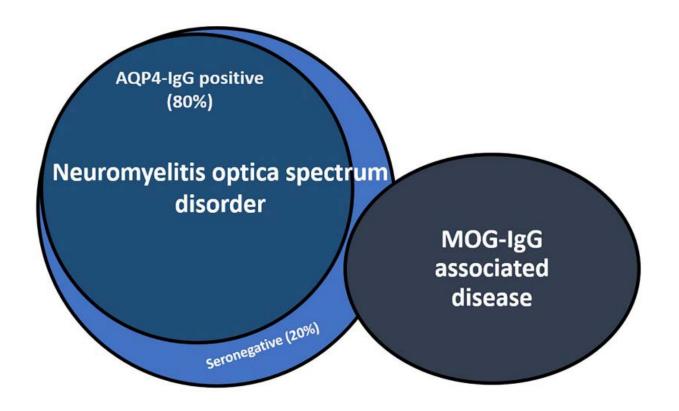
- A. AQP4 positive NMOSD
- 38% LO-NMOSD were expected to use a cane, at 60 months (5 years) after onset

B. Double seronegative NMOSD

60 months (5 years) after onset

Sepulveda M, Delgado-García G, Blanco Y, Sola-Valls N, Martinez-Lapiscina EH, Armangué T, et al. Late-onset neuromyelitis optica spectrum disorder: The importance of autoantibody serostatus. Neurol Neuroimmunol Neuroinflamm. 2019;6(6).

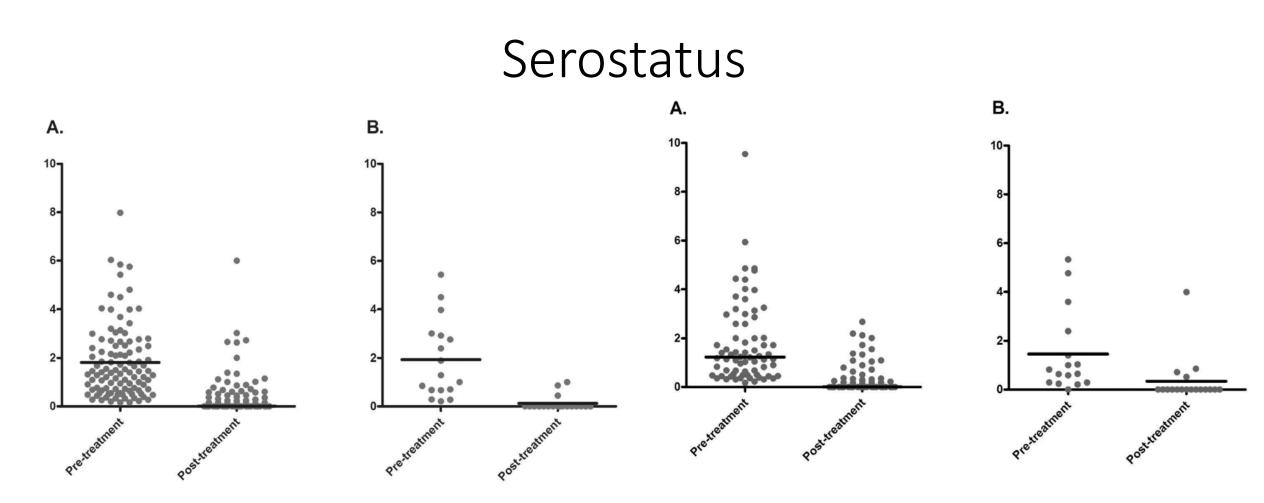
• 100% LO-NMOSD were expected to use a cane, at


NMOSD Diagnostic Criteria: Wingerchuck 2015

Ē

Seropositive	Seronegative ("double negative")	Core criteria	MRI additional criteria	
olinical aritoria	\geq 2 of 6 core clinical criteria attributable to \geq 1 relapses	Optic neuritis	Acute optic neuritis: requires a) unremarkable cranial MRI or nonspecific white matter changes or b) T2 hyperintense lesions or gadolinium- enhancing lesion of at least half of the optic nerve or chiasm	
	 optic neuritis 			
	 acute myelitis as defined by LETM area postrema syndrome (e.g., singultus not otherwise explained nausea) 	Acute myelitis	Acute myelitis: requires lesion intramedullary over three vertebral segments or <u>atrophy</u> extend- ing over three vertebral segments in patients with history of acute myelitis	
	Dissemination in space must be met (≥ 2 core clinical criteria)—additional MR criteria should be met, if applicable	Area postrema syndrome: episode of otherwise	Area postrema syndrome: requires a lesion lo- cated dorsally in the medulla oblongata or in the	
Positive AQP4- IgG status	Negative test for AQP4-IgG with the best available test			
Exclusion of	Exclusion of alternative diagnoses	Acute brainstem syn- drome	Acute brainstem syndrome: requires a periependymal brainstem lesion	
alternative diagnoses		Symptomatic narcolepsy or acute diencephalic	-	
•	nally extensive transverse myelitis, <i>AQP4-IgG</i> aquaporin-4 n G, <i>MR</i> magnetic resonance	syndrome with NMOSD- typical diencephalic changes on MRI		
		Symptomatic cerebral symptoms in combination with MRI lesions typical for NMOSD	_	

Ponleitner M, Rommer PS. Treatment of neuromyelitis optica spectrum disorder: revisiting the complement system and other aspects of pathogenesis. Wiener Medizinische Wochenschrift. 2022.


Seronegative NMOSD

- The female to male ratio was 1:1 in seronegative and 9:1 in seropositive
- Caucasian ethnicity (100 vs. 73.6%)
- Opticomyelitis at onset (27 vs. 6%)
- Less frequent severe visual impairment (12 vs. 54%)
- Simultaneous optic neuritis and transverse myelitis as onset attack type (within 30 days of each other) (32 % VS 3.6%)
- Relapse rate, disability outcome and other clinical characteristics did not differ significantly

Fujihara K. Neuromyelitis optica spectrum disorders: still evolving and broadening. Curr Opin Neurol. 2019;32(3):385-394

Dinoto A, Sechi E, Flanagan EP, Ferrari S, Solla P, Mariotto S, et al. Serum and Cerebrospinal Fluid Biomarkers in Neuromyelitis Optica Spectrum Disorder and Myelin Oligodendrocyte Glycoprotein Associated Disease. Front Neurol. 2022;13:866824

- Multicenter retrospective analysis of 245 patients with NMOSD (seropositive and seronegative)
- In Rituximab ARR declined to 0.32 (seropositive; p<0.0001) and 0.12 (seronegative; p=0.0001).
- In mycophenolate mofetil, ARR declined to 0.29 (seropositive; p<0.0001) and 0.30 (seronegative; p<0.005).
- Treatment was effective regardless of serostatus

Novel Marker for NMOSD

Cytokines

- Cytokine signature may aid in distinguishing MS from NMOSD and MOGAD. The latter are characterized by a predominat Th2 and Th17 involvement.

 CSF IL-6 may be a short term prognistic biomarker in AQP4-IgG NMOSD.

- Whilst cytokines are unable to differentiate MOGAD and NMOSD, HERV-w is able to discriminate between these two conditions.

Antibody titers

- Monitoring antibody titers may be an useful MOGAD, but not in AQP4-IgG NMOSD.

- Seronegative conversion or lowering titers are associated with monophasic disease course in MOGAD.

 CSF testing for MOG-IgG is useful in seronegative cases, for diagnostic purposes.

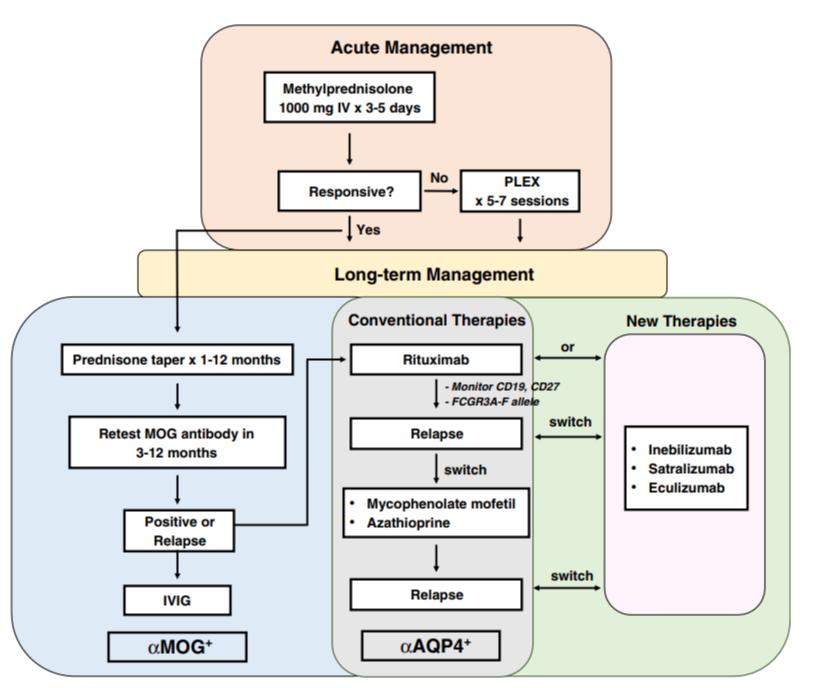
Markers of neuronal and astroglial damage

- The improvement in assays have allowed the detection of these biomarker in sera, deeply reshaping their use in clinical practice.

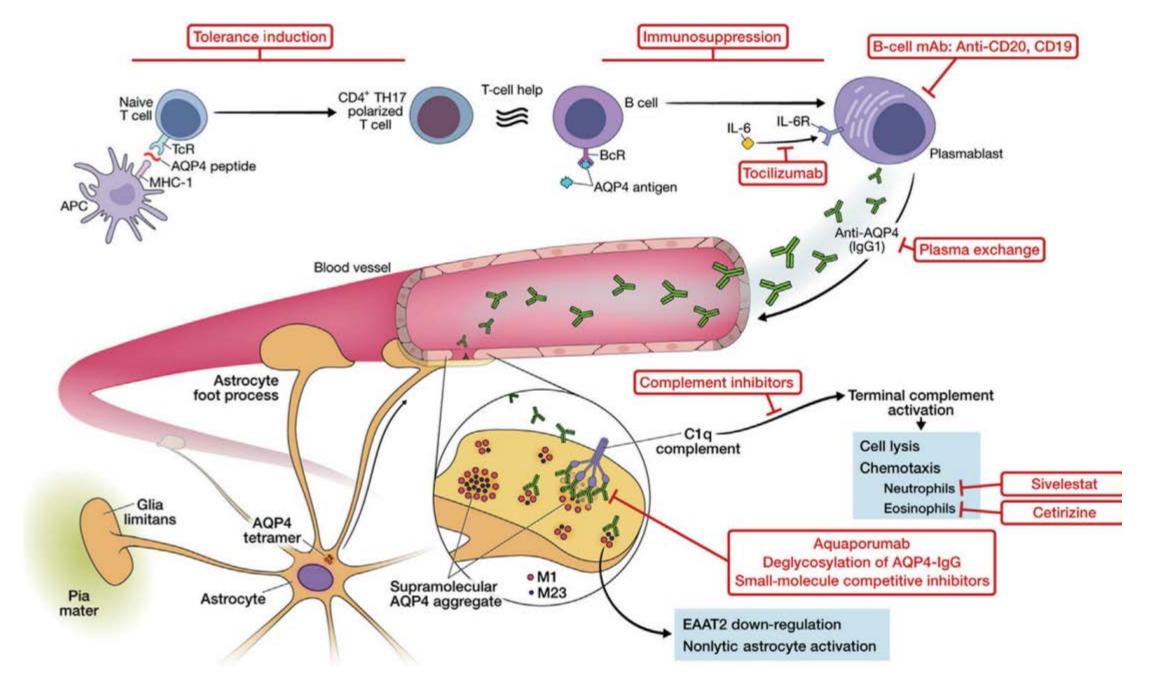
- GFAP is the most promising biomarker in NMOSD and it is associated with disability and relapses, and it may predict treatment response.

 The role of other biomarkers (NfL, NfH, S100B, tau) in NMOSD and MOGAD still requires evidence and should be aim of further studies.

Complement factors


- Complement factors may help to distinguish MS from NMOSD and MOGAD, and may be associated with clinical features, however evidence is still uncompelling.

- Despite the lack of a clear role as biomarker, complement has paramount importance in terms of pathogenesis and treatment of these conditions.

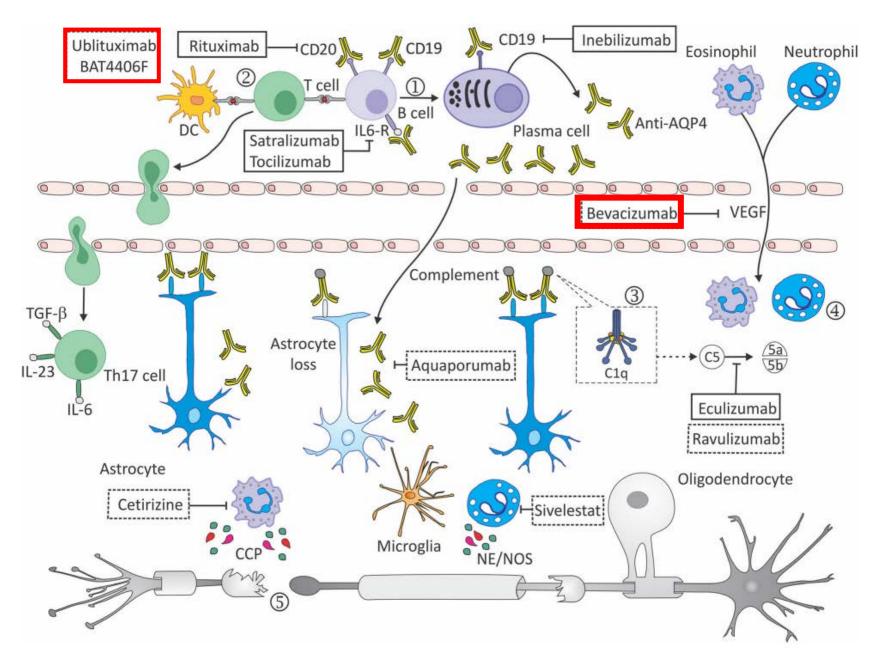

- Evidence does not support monitoring in AQP4-IgG in NMOSD
- Complement proteins support the use of complement-directed therapies, but their role as biomarkers has yet to be defined
- Evidence does not support monitoring in AQP4-IgG in NMOSD
- Serum levels of GFAP have a strong association with AQP4-IgG NMOSD disease course

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

Weinshenker BG, Wingerchuk DM. Neuromyelitis Spectrum Disorders. Mayo Clinic Proceedings. 2017;92(4):663-79

Pathogenic step	Treatment strategy	Treatment	Current status
T-cell activation	Immunosuppression	Various (corticosteroids, azathioprine, mycophenolate)	Current maintstay of therapy
	Immune tolerance	Various (vaccination to antigen, autoreactive T cells or dendritic cells; oral tolerization; induction of Treg or Breg cells)	In development
TH17 polarization	mAb to cytokines involved in TH17 polarization or to TH17 surface markers	Various	In development
B cell/plasmablast	Anti-B-cell mAb	Anti–CD20 mAb (rituximab) Anti–CD19 mAb	Current mainstay of therapy Phase 3 clinical trial
	Inhibition of B-cell survival	Anti—IL-6 receptor mAb: tocilizumab SA237	Phase 1 clinical trials Phase 3 clinical trials
Blood-brain barrier permeability	Vascular endothelial growth factor inhibition	Bevacizumab	Phase I clinical trial
AQP4-IgG	Bulk removal Protective inactive AQP4- reactive antibody or generation thereof	Plasma exchange Generation of human anti—AQP4 mAb with Fc modifications incapable of complement activation or cell-mediated cytotoxicity	Current mainstay of therapy Preclinical work in tissue slice and animal models
Complement-mediated cyototoxicity	Inhibition of complement pathways	Eculizumab CI esterase inhibitor	Phase I trial completed; phase 3 study in progress Phase I trial completed
Neutrophil cytotoxicity	Inhibition of neutrophil function/products	Sivelestat	Preclinical work in tissue slice and animal models
Eosinophil cytotoxicity	Inhibition of eosinophil function/products	Cetirizine	Preclinical work and phase I clinical trial

Weinshenker BG, Wingerchuk DM. Neuromyelitis Spectrum Disorders. Mayo Clinic Proceedings. 2017;92(4):663-79


			Pretreatment tests		
Drug	Target dose	Route	and monitoring	Adverse effects	Comment
First-line therapies					
Azathioprine	2.5-3.0 mg/kg daily	Oral	Pretreatment: Avoid if TMPT deficient. CBC with differential and LFTs During treatment: Monthly CBC and LFTs for 6 mo, then twice yearly. Reduce dose if WBC <3.0 × 10 ⁹ /L or ANC <1.0 × 10 ⁹ /L	Gastrointestinal symptoms, hypersensitivity reaction, excessive bone marrow suppression, hepatotoxicity, malignancy (long-term use), particularly lymphoma	Latency to full biological effect is 4-6 mo; therefore, immunosuppressive bridge required, typically with oral prednisone (see entry for prednisone in this Table). Drug effect can be demonstrated through increase of MCV by >5 points from baseline
Mycophenolate mofetil	750-1500 mg twice a day	Oral	Pretreatment: CBC with differential and LFTs. During treatment: Monthly CBC and LFTs for 6 mo, then twice yearly. Reduce dose if WBC <3.0 × 10 ⁹ /L or ANC <1.0 × 10 ⁹ /L.	Gastrointestinal symptoms, excessive bone marrow suppression, teratogenicity	Latency to full biological effect is 4-6 mo; therefore, immunosuppressive bridge required, typically with oral prednisone (see below)
Prednisone	30-60 mg/d initial dose	Oral	Pretreatment: Fasting blood sugar During treatment: Periodic check of fasting blood sugar, electrolytes, blood pressure	Hyperglycemia, hypertension, gastric irritation, fluid retention/weight gain	Stable dose of at least 30 mg/d used until azathioprine or mycophenolate fully effective; then taper gradually over 6 mo
Rituximab	Typical course: 1000 mg given twice, 14 d apart. Each 2-treatment course may be administered (1) every 6 mo or (2) based on reemergence of CD19 ⁺ B cells	IV	Pretreatment: CBC with differential, LFTs, hepatitis B serology During treatment: CBC with differential, LFTs before each course. Monthly flow cytometry for CD19 ⁺ cells if redosing based on cell depletion. Check immunoglobulins annually	Infusion reactions, hepatitis B reactivation, skin reactions	 With first course, consider use of oral prednisone, 30 mg/d, starting before treatment and continuing until 2-4 wk after second infusion. To plan retreatment based on B-cell depletion, monitor CD19⁺ counts with flow cytometry monthly. Initiate next course when CD19⁺ count ≥1% of total lymphocytes

Weinshenker BG, Wingerchuk DM. Neuromyelitis Spectrum Disorders. Mayo Clinic Proceedings. 2017;92(4):663-79

Update Treatment of NMOSD

- Acute treatment
 - IVMP
 - PLEX 1-1.5 plasma volume (Replacement fluid 50-55 ml/kg/cycle, albumin)
 - IVIG
- Long-term treatment
 - FDA-approved treatment for AQP4 IgG positive
 - Eculizumab (Soliris[®])
 - Satralizumab (Ensyprng[®])
 - Inebilizumab (Uplinza[®])
 - Not FDA approved
 - Rituximab
 - Azathioprine, Mycophenolate Mofetil, Rituximab, Tocilizumab

Acute treatment future era

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

Acute treatment: future era

Drug/Dose/Route of administration

Bevacizumab [90]

intravenous infusion

10 mg/kg intravenous infusion at onset of exacerbation and, if needed, a second time during the plasma exchange phase

Ublituximab [91, 92]

Intravenous

450 mg once on day 1, plus steroids 1000 mg intravenously daily on days 1–5

NPB-01 (NCT01845584)

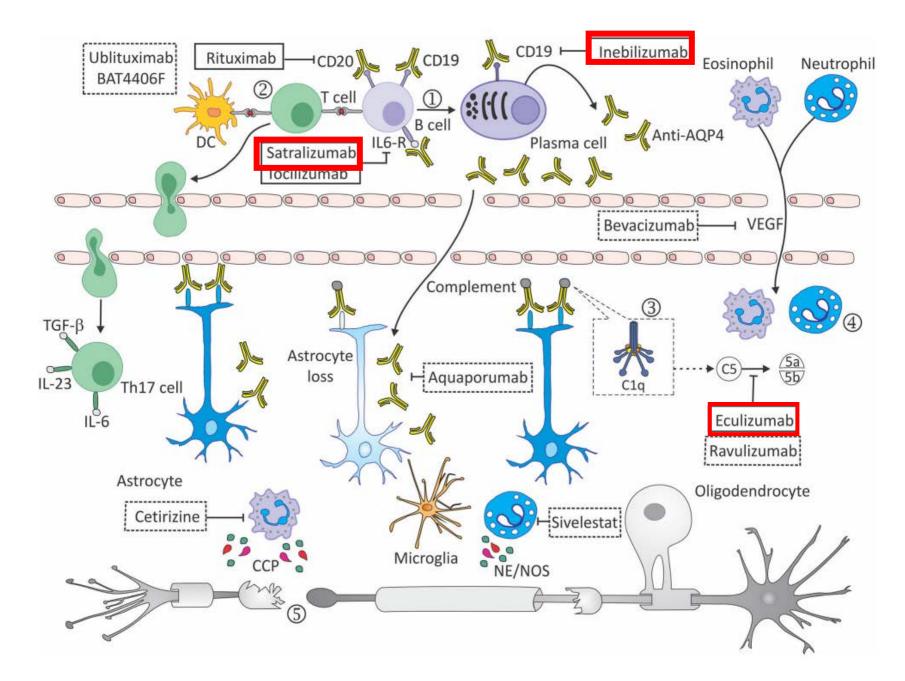
Intravenous immunoglobulin 400 mg/kg/day for five consecutive days

HBM 9161 (NCT04227470)

injection, 340 mg or 680 mg weekly administered subcutaneously for a period of 4 weeks.

Bevacizumab directly binds vascular endothelial growth factor (VEGF) to inhibit angiogenesis

Ublituximab is a monoclonal antibody that specifically binds to the transmembrane antigen CD20. Binding induces an immune response that causes lysis of B cells.


IgG can inactivate auto-reactive T-cells by competing for, and interrupting their interaction with, antigen presenting cells [87, 88].

HBM9161(HL161BKN) is a human monoclonal antibody. HBM9161 targets FcRn by blocking the FcRn IgG-Fc binding site and accelerating the degradation of IgG, reducing total IgG level in blood (including pathological IgG). The serum AQP4-IgG associated with NMOSD is a pathological IgG, so the combination of standard of care which is intravenous methylprednisolone with HBM9161 is expected to rapidly reduce AQP4-IgG levels.

Acute treatment: future era

Drug	Study design	Study phase / ClinicalTrials.gov Identifier(status 01/ 2021)	Number of patients (randomization)	NMOSD serostatus	Follow-up	Disability (EDSS stabilization or improvement)	Safety concerns
Bevacizumab	Single-center, Open Label Trial (USA)	Phase 1 add-on ther- apy (completed) NCT01777412	10	AQP4-ab + $(n = 6)$ and $- (n = 4)$	91 days after admission	at baseline: 3.5 (2– 7) at FU: 3 (1.75–6.5)	UTI that required hospitalization and improved with specific Tx
Ublituximab	Single-center, Open Label Trial (USA)	Phase 1 add-on ther- apy (completed) NCT02276963	6 (5 completed the study)	AQP4-ab +	90 days after admission	at baseline: 6.5 (5.25-7.5) at FU (n = 3): 4 (2–8)	Leukopenia $(n = 1)$ headache and body ache $(n = 3)$
NPB-01	Single-center, Open Label Trial (Japan)	Phase 2 add-on ther- apy (completed) NCT01845584	7	AQP4-ab +	Time frame: 29 days	NA	NA
HBM 9161	Non-randomized, open label, dose exploration study (China)	Phase 3 study (Active, recruiting) NCT04227470	12 (estimated enrollment)	AQP4-ab +	Time frame: 189 days	NA	NA
Immunoadsorption or Plasma Exchange	Prospective, Multicenter, Single- blind, Randomized study (China)	Phase 2 study (not yet recruiting) NCT04064944	144 (estimated enrollment)	AQP4-ab +	Time frame: 4 weeks after the last treatment	NA	NA

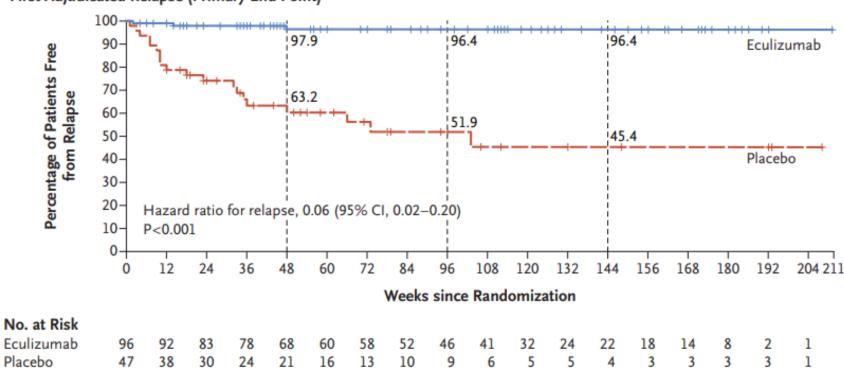
Long-term Treatment FDA Approved

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

Rituximab- RIN-1

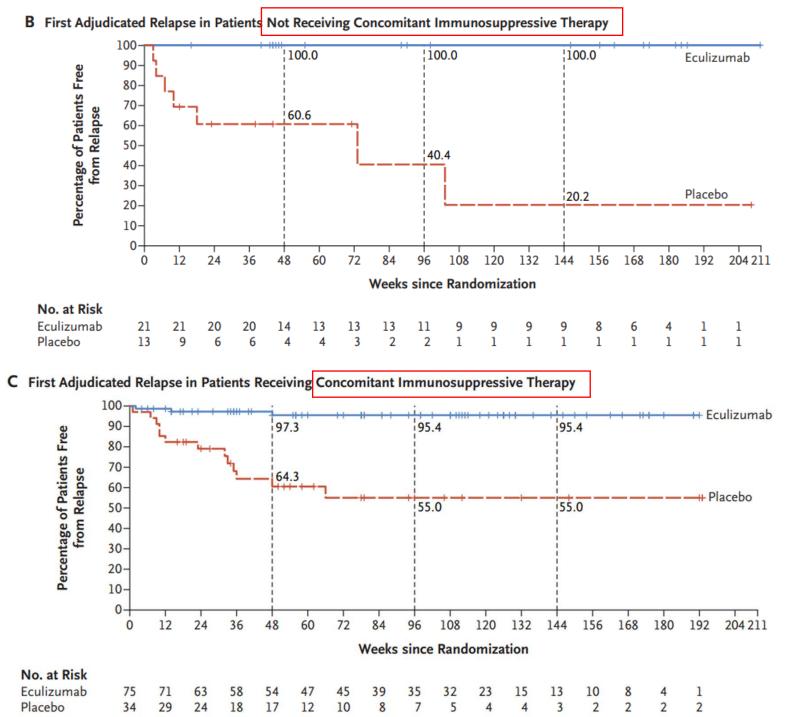
- a multicenter, 1:1 randomized, double-blind, placebo-controlled clinical trial of rituximab for AQP4-IgG+ NMOSD
- Eight hospitals in Japan (72 weeks)
- N = 38
- 375mg/m2 of rituximab weekly for 4 weeks followed by two 1,000 mg infusions 2 weeks apart at 6-monthly intervals
- All patients received a fixed dose of oral steroids (5–30mg of prednisolone) for 8 weeks from randomization and reduced by 10% at each visit to 2 mg daily
- Primary endpoint: time to first relapse
 - 37% on placebo relapse vs 0 % on rituximab
- Adverse event: no PML report, infusion reaction, risk hypogammaglobulinemia

Eculizumab - PREVENT

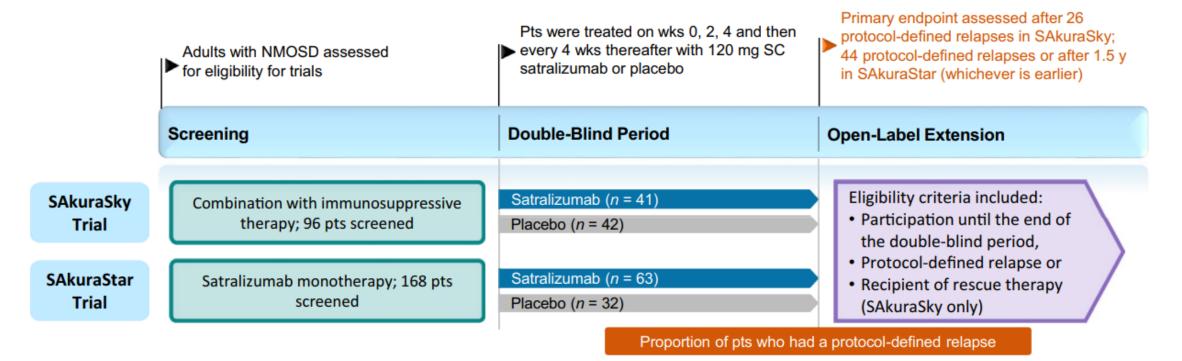

- Approved for atypical HUS
- First FDA-approved therapy for AQP4 positive NMOSD (2019)- US, EU, Japan
- Inhibit C5 cleavage to C5a and C5b → prevent MAC formation

- Phase 3, randomized, double-blind, placebo-controlled, time-to-event trial
- April 2014 October 2017
- Primary endpoint = first adjudicated relapse
- Secondary endpoint = ARR, QOL, EDSS
- SE: meningococcal infection*, encapsulated bacteria

	PREVENT Extension Trial ClinicalTrials.gov, number NCT0200314 EudraCT, number 2013-001151-12		
Screening (duration: 1–6 weeks)	Double-blind Treatment (duration dependent on time to relapse, discontinuation or trial end)	Open-label Treatment (duration: maximum 5.5 years)	
,	Intravenous Eculizumab‡	 	
	900 mg weekly for 4 doses (induction dose)1200 mg every 2 weeks from the following week (maintenance dose)	Intravenous Eculizumab 1200 mg every 2 weeks after	
Meningococcal vaccination		4-week blind induction period	
Randomization 2:1†	Intravenous Placebo	(Supportive IST permitted§)	
(eculizumab:placebo)	(Supportive IST permitted in both treatment arms§)		

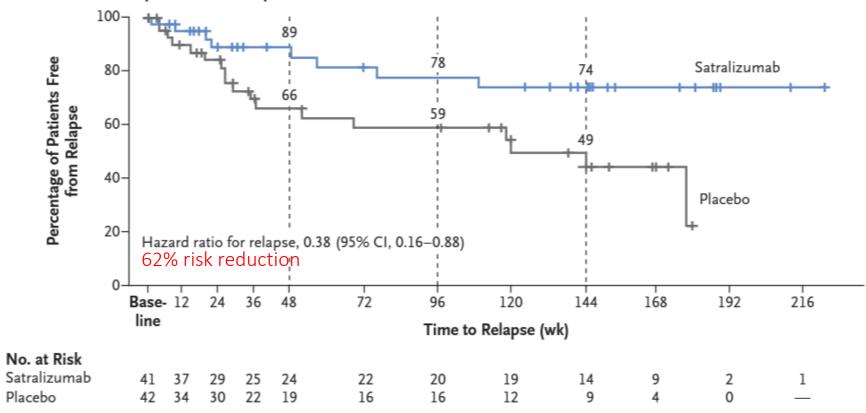

Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, et al. Eculizumab in Aquaporin-4–Positive Neuromyelitis Optica Spectrum Disorder. New England Journal of Medicine. 2019;381(7):614-25

Eculizumab - PREVENT

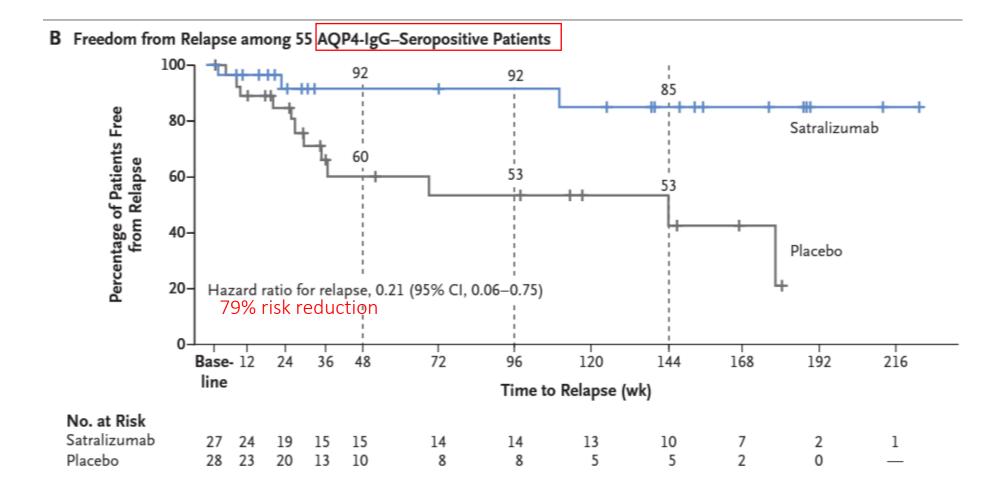

A First Adjudicated Relapse (Primary End Point)

- Eculizumab reduce percentage of patients who have relapse 94%, and reduce ARR 96% (Compare to placebo)
- EDSS reduced but not significant compare to placebo
- Included only AQP4-IgG positive patients

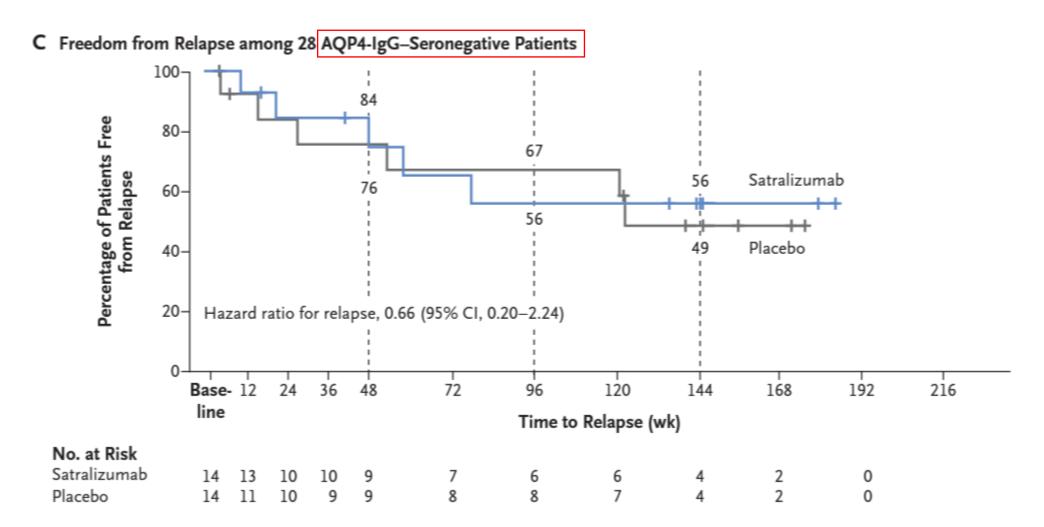
Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, et al. Eculizumab in Aquaporin-4–Positive Neuromyelitis Optica Spectrum Disorder. New England Journal of Medicine. 2019;381(7):614-25


Satralizumab

- Humanized IgG2 targets IL-6 receptor \rightarrow block IL-6 receptor \rightarrow decrease B-cell proliferation
- Enhancement design to dissociate from Ag in pH-dependent manner to release into blood stream and bind to Ag again → prolong half life
- Included seronegative and seropositive NMOSD

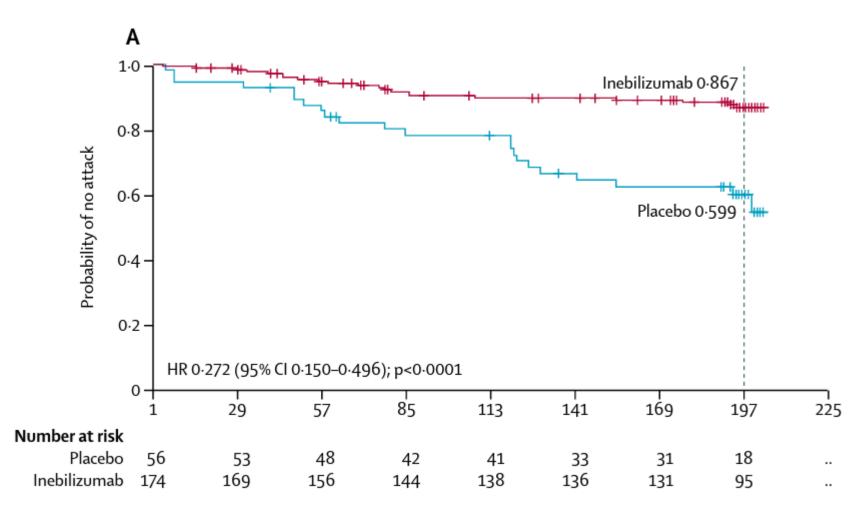

Satralizumab - SAkuraSky

A Freedom from Relapse in Overall Population

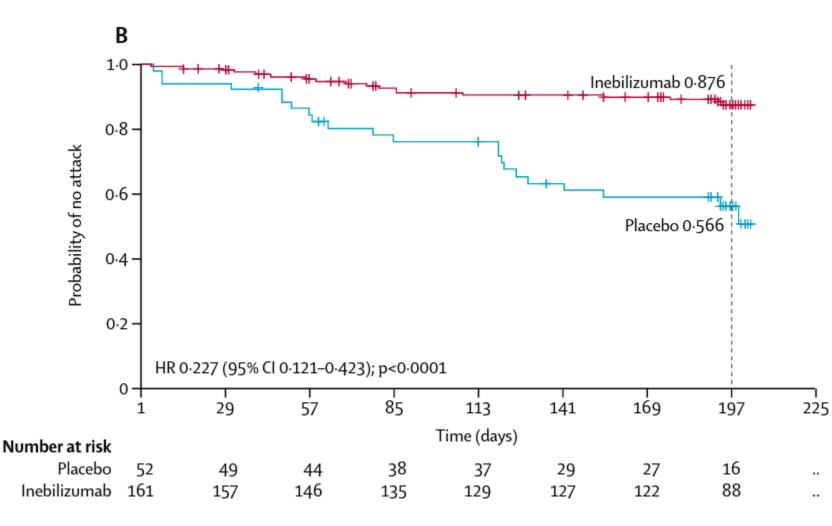


- Phase III, randomized double-blind, placebo-controlled, time to event trial
- 44 sites, 13 countries
- Primary endpoint = adjudicated relapse

Satralizumab - SAkuraSky


Satralizumab - SAkuraSky

Inebilizumab N-Momentum


- Humanized, affinity-optimized, afucosylated IgG1 kappa mAB
- Target B cell surface CD19 at pro-B-cell and pre-B-cell
- Double-blind, randomized placebo-controlled phase II/III with an open-label extension period
- 99 sites, 24 countries, Randomized 3: 1 (drug: placebo), 293 patients
- Dose: 300 mg IV d1 and d15 q 6 months
- All participant received prednisolone 20 mg/day, day 1-14 then tapered to day 21 (prevent an attack during the induction period)
- Primary endpoint = time (days) to the onset of NMOSD attack
- Secondary endpoint = Worsening EDSS from baseline, change from baseline in lowcontrast VA binocular score, the cumulative number of active MRI lesions, number of NMOSD-related hospitalization

Inebilizumab N-MOmentum

- Overall population
- NMOSD attacks
- Inebilizumab 21/174 (12.1 %)
- Placebo 22/58 (39.3%)
- 73 % risk reduction
- HR 0.272 (p < 0.0001)
- NNT at day 197 = 3.73

Inebilizumab N-MOmentum

- AQP4- IgG seropositive population
- NMOSD attacks
- Inebilizumab 18/161 (11.2%)
- Placebo 2/52 (42.3%)
- 77 % risk reduction
- HR 0.227 (p < 0.0001)
- NNT at day 197 = 3.23

Inebilizumab N-MOmentum

- Pharmacodynamic effect on CD20 was observed within 4 weeks
- 3% found anti inebiizumab, but no effect on pharmacokinetic and dynamic
- Side effects
 - Similar frequency of adverse events as placebo
 - Infusion- related reaction , UTI, arthralgia, back pain, headache, eye pain
 - Serious side effect (1%)
 - Atypical pneumonia, 3rd degree burn, acute cholangitis, acute cholecystitis, LFT elevated

	PREVENT (eculizumab) ¹⁵	SAkuraSky ¹⁷ and SAkuraStar ¹⁶ (satralizumab)	N-Momentum (inebilizumab) ³⁷	
Immunological target	Complement component 5	Interleukin-6 receptor	CD19 B-cell marker	
Trial design*	Phase 3 trial of eculizumab with immunosuppressive therapy vs placebo with immunosuppressive therapy	Phase 3 trials of satralizumab with immunosuppressive therapy vs placebo with immunosuppressive therapy (SAkuraSky) or satralizumab alone vs placebo alone (SAkuraStar)	Phase 2/3 trial of inebilizumab vs placebo	
Background immunotherapy	Background immunotherapy was permitted	SAkuraSky: background therapy was necessary SAkuraStar: no background immunotherapy	No background immunotherapy	
Aquaporin-4 serostatus	Aquaporin-4-IgG seropositive only	Aquaporin-4-IgG seropositive or seronegative	Aquaporin-4-IgG seropositive or seronegative	
Relapse history	At least two relapses in previous year, or at least three relapses in previous 2 years with at least one in previous year	SAkuraSky: at least two relapses in previous 2 years and at least one relapse in previous year; SAkuraStar: at least one relapse in previous year	At least two relapses in previous 2 years and at least one relapse in previous year	
Previous rituximab	Yes, but not within 3 months before baseline	Yes, but not within 6 months before baseline	Yes, but not within 6 months before baseline or B cells below lower limit of normal†	
Primary endpoint	Time to event (relapse)	Time to event (relapse)	Time to event (relapse)	
Ev <mark>ent (relapse)</mark> definition	New or worsening symptoms persisting for 24 h not attributable to another cause; relapses were classified as minor or major using Opticospinal Impairment Score	New or worsening symptoms persisting for 24 h and meeting any one of four EDSS or Functional System Score thresholds	Report of neurological symptoms attributable to NMOSD, meeting a set of criteria specific for the area of involvement (eg, optic neuritis,	
			transverse neuritis, brain)	
Adjudication committee for assessment of primary outcome	Not in original design; protocol amended after enrollment of 88 patients; 21 relapses occurred before amendment	Yes	transverse neuritis, brain) Yes	
committee for assessment of	enrollment of 88 patients; 21 relapses occurred	Yes Pain (VAS), fatigue (FACIT), SF-36, EQ-5D, timed 25-foot walk, percentage of relapse-free patients, ARR, modified Rankin Scale, Zarit Burden Interview, EDSS, visual acuity		
committee for assessment of primary outcome Secondary endpoints	enrollment of 88 patients; 21 relapses occurred before amendment ARR, EDSS, modified Rankin Scale, Hauser Ambulation Index, EQ-5D-3L ≤7·0	Pain (VAS), fatigue (FACIT), SF-36, EQ-5D, timed 25-foot walk, percentage of relapse-free patients, ARR, modified Rankin Scale, Zarit Burden	Yes EDSS, incidence of new MRI lesions, disease-related admissions to hospital, visual acuity ≤8-0	
committee for assessment of primary outcome Secondary	enrollment of 88 patients; 21 relapses occurred before amendment ARR, EDSS, modified Rankin Scale, Hauser Ambulation Index, EQ-5D-3L	Pain (VAS), fatigue (FACIT), SF-36, EQ-5D, timed 25-foot walk, percentage of relapse-free patients, ARR, modified Rankin Scale, Zarit Burden Interview, EDSS, visual acuity	Yes EDSS, incidence of new MRI lesions, disease-related admissions to hospital, visual acuity	

Levy M, Fujihara K, Palace J. New therapies for neuromyelitis optica spectrum disorder. Lancet Neurol 2021;20(1):60-7

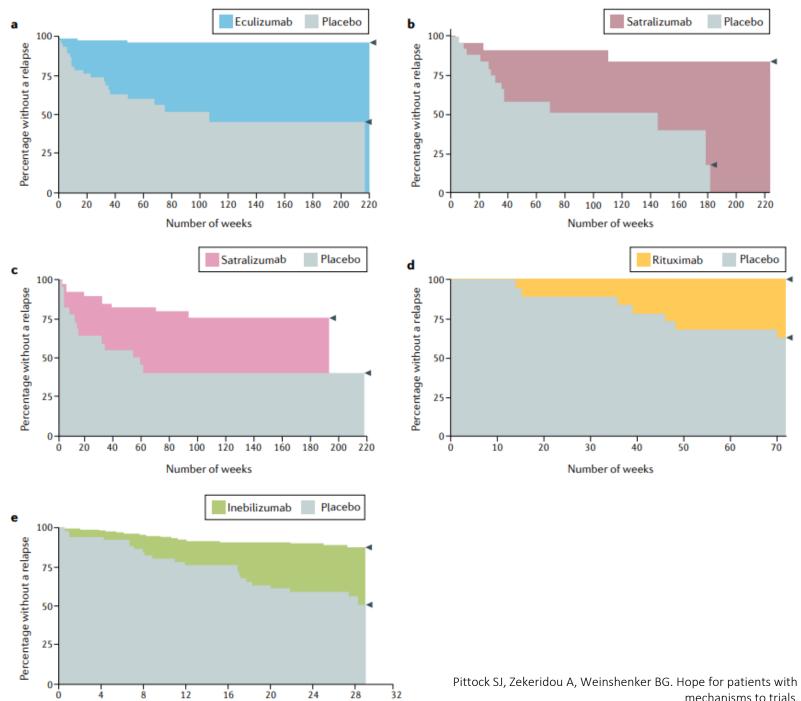
	PREVENT (eculizumab) ¹⁵		SAkuraSky (satralizumab) ¹⁷		SAkuraStar (satralizumab) ¹⁶		N-Momentum (inebilizumab) ³⁷	
	Placebo with or without IST (n=47)	Eculizumab with or without IST (n=96)	Placebo with or without IST (n=42)	Satralizumab with or without IST (n=41)	Placebo (n=32)	Satralizumab (n=63)	Placebo (n=56)	Inebilizumab (n=174)
Aquaporin-4-lgG seropositive, n (%)	47 (100%)	96 (100%)	28 (67%)	27 (66%)	23 (72%)	41 (65%)	52 (91%)	161 (91%)
Female, n (%)	42 (89%)	88 (92%)	40 (95%)	37 (90%)	31 (97%)	46 (73%)	50 (89%)	159 (91%)
Age, mean years (SD)	45 (13)	44 (13)	43 (12)	41 (16)	41 (11)	45 (12)	43 (14)	43 (12)
Age at initial clinical presentation, mean years (SD)	39 (15)	36 (14)	39 (12)	35 (17)	39 (13)	36 (11)	Not reported	Not reported
Baseline EDSS	4.0 (1.0-7.0)*	4.0 (1.0-6.5)*	3.6 (1.3)†	3.8 (1.6)†	3.6 (1.6)†	3.9 (1.2)†	4 ⋅0*	3-5*
Discontinuation rate, n (%)	3 (6%)	16 (17%)	10 (24%)	3 (7%)	4 (12%)	7 (11%)	2 (4%)	6 (4%)
Baseline ARR in previous 2 years, mean (SD)	2.1 (1.0)	1.9 (0.9)	1-4 (0-5)	1.5 (0.5)	1.4 (0.6)	1.5 (0.7)	1.6 (1.5)	1.7 (1.5)
Background immunotherapy, n (%)	unotherapy, n (%) Corticosteroids: Corticosteroids: 11 (23%); Azathioprine with Azathioprine with or without or without corticosteroids: corticosteroids: Mycophenolate 13 (28%); with or without Mycophenolate mofetil with or without Other with or without	None: 21 (22%); Corticosteroids: 16 (17%);	Azathioprine: 13 (31%); Mycophenolate 6); mofetil: 8 (19%); Mycophenolate mofetil with	Corticosteroids: 17 (41%); Azathioprine: 16 (39%); Mycophenolate mofetil: 4 (10%); Azathioprine with corticosteroids: 3 (7%); Mycophenolate mofetil with corticosteroids: 1 (2%)	None: 32 (100%)	None: 63 (100%)	None: 56 (100%)	None: 174 (100%)
		or without corticosteroids: 37 (39%); Mycophenolate mofetil with or without corticosteroids: 17 (18%); Other with or without						

ARR=annualised relapse rate. EDSS=Expanded Disability Status Scale. IST=immunosuppressive therapy. *Median. †Mean.

Table 2: Comparison of participants at baseline

Study	Population	Study arm		Percentage relapse free		Hazard ratio (95%Cl, P)	Summary of secondary	
			48 weeks	96 weeks	(%)		outcomes in total population	
PREVENT ²³	Total	Placebo	63.2	51.9	94	0.06 (0.02–0.2,	ARR 0.02 with drug,	
		Treatment	reatment 97.9 96.4		<0.001)	0.35 with placebo; change in EDSS score 0.18 with drug, -0.12 with placebo; change in mRS -0.24 with drug, -0.09 with placebo		
SAkuraSky ²⁴	Total	Placebo	66.0	58.7	62	0.38 (0.16–0.75,	ARR 0.11 with drug, 0.32 with placebo; change in EDSS score -0.1 with drug, -0.21	
		Treatment	88.9	77.6		0.018)		
	AQP4-lgG⁺	Placebo	59.9	53.3	79	0.21 (0.06–0.75,		
		Treatment	91.5	91.5		NA)	with placebo	
SAkuraStar ²⁵	Total	Placebo	61.9	51.2	55	0.45 (0.23–0.89,	No significant changes from baseline to week	
_		Treatment	76.1	72.1		0.018)		
	AQP4-IgG⁺	Placebo	55.4	41.1	74	0.26 (0.11–0.63,	24 in pain scores or	
L		Treatment	82.9	76.5		0.001)	fatigue scores	
N-MOmentum ²²	Total	Placebo	60.7ª	NA	73	0.27 (0.15–0.49,	EDSS score	
		Treatment	8 7.9 ª	NA		<0.0001)	worsening 16% with drug, 34% with	
	AQP4-lgG⁺	Placebo	56.6ª	NA	77	0.23 (0.12–0.42,	placebo; 43% fewer new MRI lesions	
		Treatment	87.6ª	NA		<0.0001)	with drug than with placebo; 71% fewer disease-related hospitalizations with drug than with placebo	
RIN-1 (REF. ²⁶)	Total	Placebo	Number	rs too sma	ARR 0.0 with drug,			
		Treatment		lifference P=0.005	0.32 with placebo			

NMOSD RCT

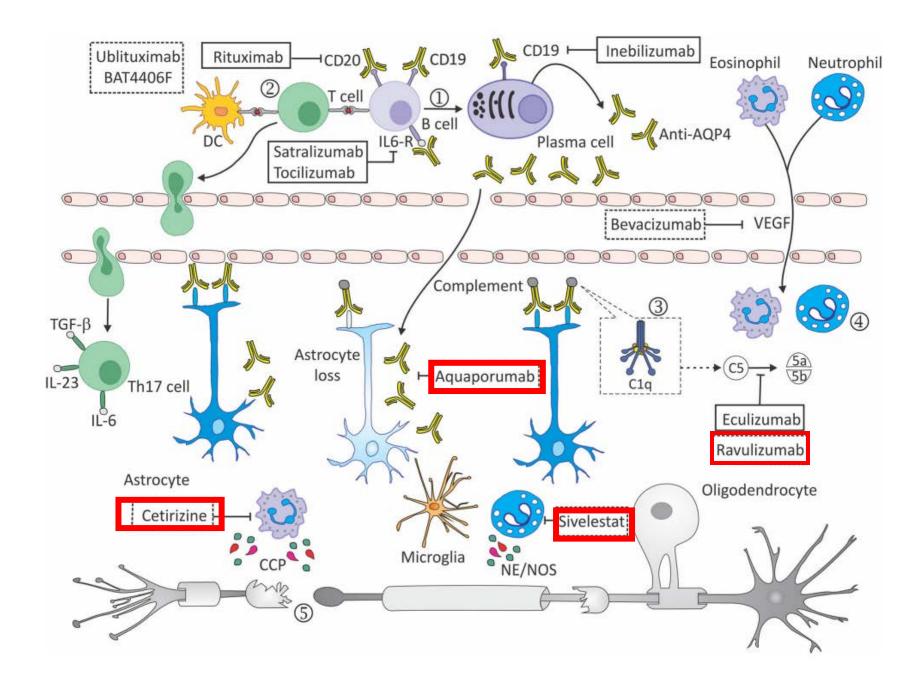

- The baseline characteristics of participants were similar across the five trials
- AQP4-IgG positive is most benefit
- No agent has been approved for AQP4-IgG— seronegative NMOSD
- For N-MOmentum, risk reductions were reported at 28 weeks, which is considerably earlier than in the other four trials
- N-MOmentum was the only trial in which a significant reduction was seen in the risk of disability worsening in indicated
- For RIN-1, the number of participants was too small to enable accurate quantification of risk reduction

Pittock SJ, Zekeridou A, Weinshenker BG. Hope for patients with neuromyelitis optica spectrum disorders — from mechanisms to trials. Nature Reviews Neurology. 2021;17(12):759-73.

Summary of Adverse Events

Study	Study arm	n	Total adverse events (%)	Serious adverse events (%)	No. of deaths in RCP	No. of deaths in OLP	Infections (%)	Injection/ infusion-related reactions (%)
PREVENT ²³	Placebo	47	91	28ª	0	NR	NR	NR
	Treatment	96	92	26	1 ^b		NR	NR
SAkuraSky ²⁴	Placebo	42	95	21	0	0	62	5
	Treatment	41	90	17	0		68	12
SAkuraStar ²⁵	Placebo	32	75	16	0	0	44	16
	Treatment	63	92	19	0		54	13
N-MOmentum ²²	Placebo	56	73	9	0	2°	41	11
	Treatment	174	72	5	0		38	9
RIN-1 (REF.26)	Placebo	19	90	21	0	NR	NR	0
	Treatment	19	90	21	0		NR	37

Pittock SJ, Zekeridou A, Weinshenker BG. Hope for patients with neuromyelitis optica spectrum disorders — from mechanisms to trials. Nature Reviews Neurology. 2021;17(12):759-73.



Pittock SJ, Zekeridou A, Weinshenker BG. Hope for patients with neuromyelitis optica spectrum disorders — from mechanisms to trials. Nature Reviews Neurology. 2021;17(12):759-73.

1		
1		
	V	

	Eculizumab	Satralizumab	Inebilizumab	Rituximab
Trial	PREVENT	SAkuraSky/ SAkuraStar (no background IST)	N-Momentum	RIN-I
Mechanism	C5 inhibitor	IL-6 receptor blocker	CD19 B-cell blocker	CD-20 B-cell blocker
Size	96 treated/47 placebo (100% AQP4+)	41 treated/42 placebo 63 treated/32 placebo	174 treated/56 placebo	19 treated /19 placebo
Dose	900 mg IV wekly x 4 wks, then 1200 mg IV q 2 weeks	120 mg SC at week 0,2,4 then q 4 weeks	300 mg IV on day 1, 15 Then q 6 months	1000 mg q 2 weeks then 1000 mg q 6 months
Risk reduction (%)	94%	74 – 79%	77%	0/19 vs 7/19 relapses
Side effects	Severe meningococcal infection ** (vaccination recommended), encapsulated organism	Skin reactions, high cholesterol, abnormal LFT, infection	Infusion reaction, hypogammaglobulinemia, PML	Infusion reactions, PML, hypogammaglobulinemia
Cost /year/person USD	\$710,000	\$219,000 → \$190,000	\$393,000 → \$262,000	\$18,000

Long-term Treatment Future Era

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

Long-term treatment: future era

Drug/Dose/Route of administration

Ravulizumab

Intravenous

Infusion on day 1, followed by weight-based maintenance doses on day 15, then once every 8 weeks

Bortezomib [114]

Subcutaneous 1 mg/m² of body surface area on days 1, 4, 8, and 11 per cycle followed by a 10-day treatment-free interval.

Cetirizine (add-on) [115]

Oral 10 mg each day

BAT4406F

Intravenous Open-label dose escalation starting from 20 mg.

SHR1459

Oral Tablets taken once daily

Precinical study

Aquaporumab (mAb-53) (animal model) [119]

mAb-53 has not been clinically applied to patients

Long-term relapse prevention treatment: future era

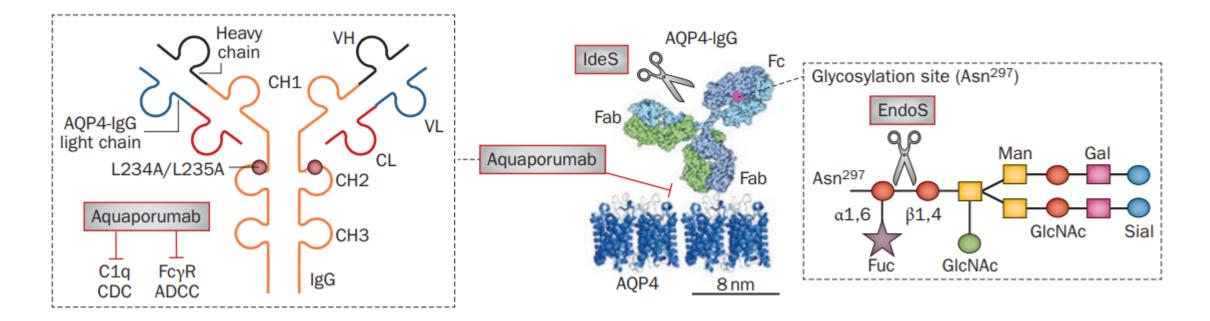
Telitacicept

Subcutaneous 160 mg weekly Second-generation anti-C5 monoclonal antibody (binds to complement protein 5 (C5) and blocks its activation by complement pathway convertase, thus inhibiting C5 cleavage into fragments C5a and C5b, engineered from eculizumab. It is a long-lasting recycling IgG monoclonal antibody with increased affinity for FcRn and rapid endosomal dissociation of the ravulizumab-C5 complex, allowing lysosomal degradation of C5 while recycling ravulizumab to the vascular space through the FcRn [113].

Binds the catalytic site of the 26S proteasome with high affinity and specificity leading to elimination of both plasmablasts and plasma cells by activation of the unfolded terminal protein response. Bortezomib may protect astrocytes from NF κ B-dependent inflammatory damage in early events in NMOSD pathogenesis.

Cetirizine (antihistaminic) could prevent damage by blocking eosinophils which have been implicated in the pathophysiology of NMOSD.

Fully humanized anti-CD20 monoclonal antibody


Bruton's tyrosine kinase (BTK) inhibitor. BTK plays a crucial role in B cell development by transmitting intracellular signals from the pre-B cell receptor

Aquaporumab is an engineered monoclonal antibody with high affinity for AQP4 channels that contain Fc mutations blocking cell- and complement-mediated cytotoxicity effector functions (possible mechanism of competitive inhibition as a steric inhibitor). Aquaporumab has shown beneficial effects in an NMOSD mouse model, but has not been clinically tested in NMOSD patients.

Recombinant transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI-Fc; located on CD27+ memory B cells and plasma cells) fusion antibody that works by binding to two cell-signaling molecules, B lymphocyte stimulator (BLyS), and a proliferation-inducing ligand (APRIL), both are a member of the tumor necrosis factor (TNF) family [115].

Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. Journal of Neuroinflammation. 2021;18(1):208.

AQUAPORUMAB

- High-affinity, nonpathogenic anti-AQP4 antibody (aquaporumab) competes with pathogenic AQP4-IgG for AQP4 binding
- Fc portion mutated \rightarrow not activate complement

Drug	Study design	Study phase/ ClinicalTrials.gov Identifier (status 01/2021)	Number of patients (randomization)	NMOSD serostatus	Free of relapses/ relapse reduction (RR)	Follow-up	Disability (EDSS stabilization or improvement)	Safety concerns
Ravulizumab	Multicenter, open-label, external placebo- controlled	Phase 3 study (active, recruiting) NCT04201262	55 (estimated enrollment)	AQP4-ab +*	NA	Time frame: 2 years	NA	NA
Bortezomib	Single-center, Open Label Trial (USA)	Phase 2 add-on study (completed) NCT02893111	5	AQP4-ab+*	NA	Time frame: 1 year	NA	NA
Cetirizine	Single-center, Open Label Trial (USA)	Phase 2 add-on study (completed) NCT02865018	16	AQP4-ab+ (with ON or TM)**	NA	Time frame: 1 year	NA	NA
BAT4406F	Single-center, Open Label Trial (China)	Phase 1 dose- escalation study (not yet recruiting) NCT04146285	48 (estimated enrollment)	AQP4-ab + and -*	NA	NA	NA	NA
SHR1459	Single-center, Open Label Trial (China)	Phase 2 study (not yet recruiting) NCT04670770	10 (estimated enrollment)	AQP4-ab +*	NA	Time frame: 52 weeks	NA	NA
Hematopoietic Stem Cell Transplantation	Single Group Assignment; Open Label study (USA)	Phase 1, 2 study (completed) NCT00787722	13 (12 completed the study)	AQP4-ab+ (n=12) and unknown (n= 1)	80%	5 years	at baseline: 4.4 at FU: 3.3	1/13 died due to unrelated complications from SLE Neutropenic fever (5/13), Hypophosphatemia (9/13) Infections (1/13)

Take Home Message

- AQP4 antibody binding leads to AQP4 internalization, complement-dependent and antibodydependent cellular cytotoxicity, and water channel dysfunction
- Cumulative attack-related injury causes disability in NMOSD, so the prevention of attacks is expected to prevent disability accrual
- Traditional immunosuppressant therapies, including mycophenolate mofetil, azathioprine and rituximab, were widely used but their benefits have not been assessed in controlled studies
- No direct comparison with conventional therapy and approved therapy
- Decisions on choosing treatment depend on cost, convenience, health care provider and availability
- Pregnancy and long-term safety limited data
- No license on age <12 years