

Updates in MOGAD Insights in Mechanism and Diagnosis

Wattakorn Laohapiboolrattana, MD

10th April 2023

Scope of Talk

- Importance of MOGAD
- Structure and function of MOG
- Pathogenesis of MOGAD
- Clinical features
- Diagnosis
- Treatment

Introduction

Importance of MOGAD

- MOGAD is a **global disease** affecting people of **all age**
 - Incidence = 1.6-3.4/million/year
 - Prevalence = 20/million
 - No sex and racial predominance
- MOGAD is a distinct entity, and it differs from MS and NMOSD in histopathological features, imaging features, treatment responses, and outcomes

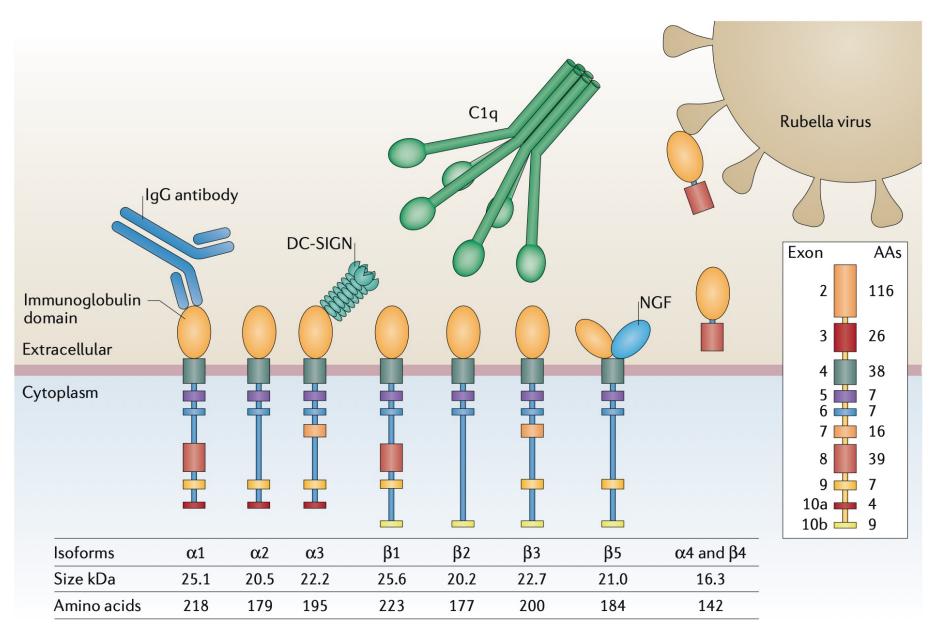
Mean percentage MOG-Ab positive

Disease group	Number of studies	Number of MOG-Ab positive individuals			tage of M rith 95% c				
IB/ELISA									
Controls	14	221/1726 (12.8%)							
MS	16	423/2111 (20.0%)							
AQP4-Ab ⁺ NMOSD	1	6/11 (54.5%)							
Other non-MS	7	41/252 (16.3%)	_			-			
RIA									
Controls	3	3/236 (1.3%)	-	-					
MS	3	8/264 (3.0%)							
Other non-MS	1	13/101 (12.9%)							
CBA-FACS									
Controls	18	15/1173 (1.3%)							
MS	21	105/1771 (5.9%)							
AQP4-Ab⁺NMOSD	6	10/317 (3.2%)							
Other non-MS	20	273/1026 (26.6%)							
CBA-IF									
Controls	17	45/5504 (0.8%)							
MS	25	24/1608 (1.5%)							
AQP4-Ab⁺NMOSD	24	7/1520 (0.5%)							
Other non-MS	41	757/2639 (28.7%)			-	_			
			0	10	 20	30	 40	 50	 60
	_		0	10	20	50	10	50	00

By using **cell-based assays** for detection of MOG-Ab, patients who were previously diagnosed with other demyelinating diseases have been now recognized as having MOGAD

Reindl et al. Nature Reviews Neurology. 2019

а

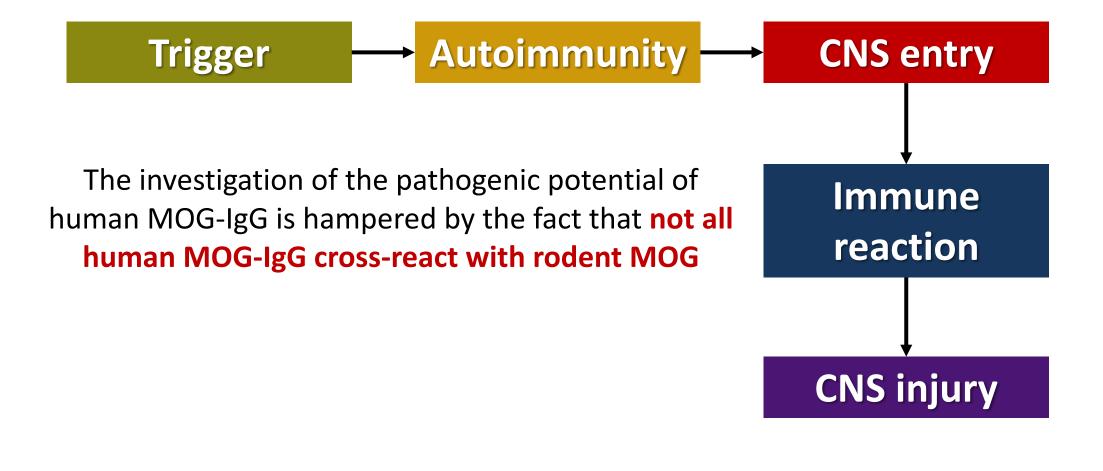

Myelin Oligodendrocyte Glycoprotein

Structure and function

- MOG is a myelin component (0.05% of myelin protein) which is present in the CNS of mammals only, exclusively on the surface of myelin sheaths and oligodendrocytes
 - It contains 245 amino acids with the molecular weight of 26-28 kilodalton
 - It resides at the outermost layer of myelin which results in encephalitogenic susceptibility
- Function: unknown
 - Myelin maturation and integrity?
 - Immune regulation?
 - Cell surface interaction?

Updates in MOGAD

Structure & Pathogenesis


Experimental autoimmune encephalomyelitis

- MOG is frequently used as an autoantigen in the experimental autoimmune encephalomyelitis (EAE) model of CNS demyelination
 - In this model, animals are actively or passively immunized with different myelin proteins/peptides to study the underlying immunopathogenesis

Injection of **MOG antigen** has been shown to result in EAE causing synergy between **encephalitogenic T cells and B cells**

Lerch et al. Journal of Neuroophthalmology. 2023

Overview of pathogenesis

Proposed mechanisms of autoimmunity

• Generation of autoimmune response: there are 2 possible explanations

Primary damage of oligodendrocytes \rightarrow transport myelin antigens as soluble antigens or by DC of the choroid plexus or meninges into the deep cervical LN \rightarrow activation of T cells

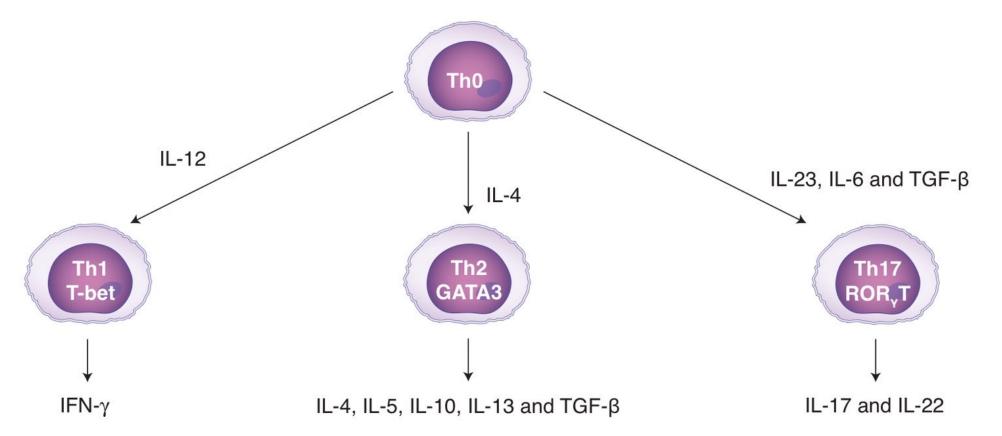
Outside-in hypothesis

Inside-out

hypothesis

Activation of lymphocytes in peripheral LN through \neg molecular mimicry or pan-activation after a systemic viral infection \rightarrow cross-reactivity to self-MOG antigen

Incomplete negative thymic selection causing self-intolerance


Proposed mechanisms of CNS entry

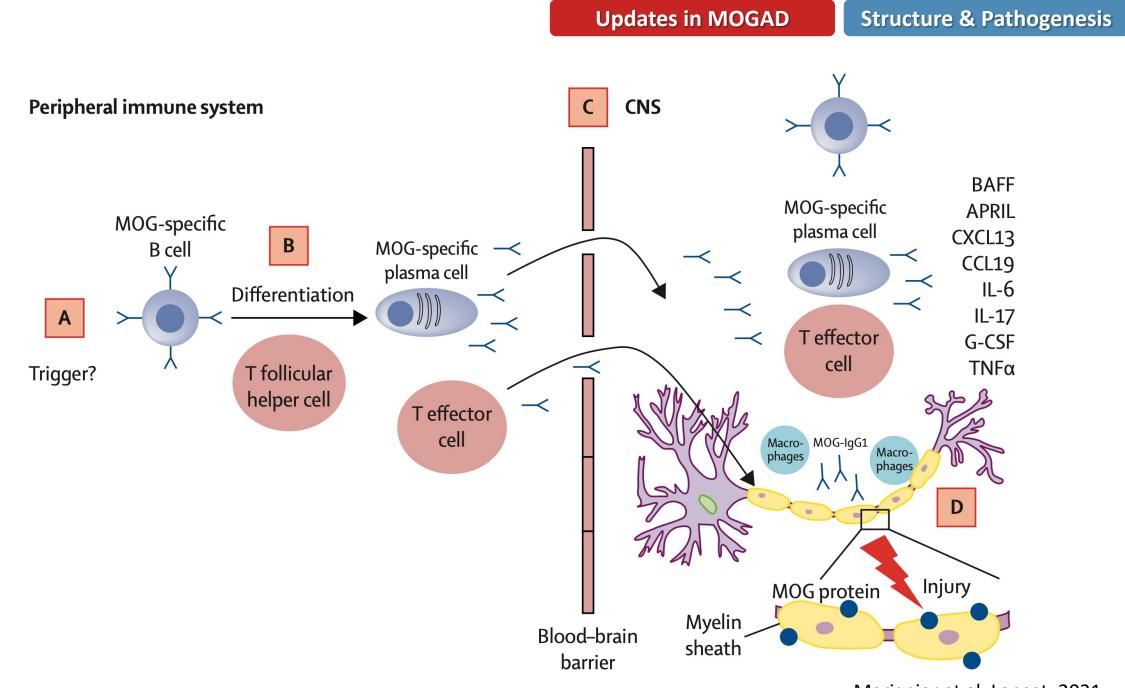
- Under normal circumstances, the CNS parenchyma is free of lymphocytes
- A pro-inflammatory environment enables opening of the blood-brain barrier for the
- T-cells home to the brain after priming where they most likely enter the brain parenchyma through the meninges or the choroid plexus
 - After entry into the CNS border regions, T cells need to be reactivated by antigen-presenting cells to gain access to the CNS parenchyma across the BBB
 - Production of cytokines/chemokines and subsequent activation of nearby tissue including the blood-meningeal barrier and BBB enables the infiltration of more immune cells and MOG-IgG into the CNS parenchyma that directly damage neurons and glia

Proposed mechanisms of immune reaction and CNS injury

- T cell polarization
 - Different studies examining the cytokine/chemokine profiles in patients with MOGAD measured increased levels of T-helper (Th)17-related cytokines/chemokines (IL-6, IL-8, IL-17a), G-CSF, Th1-related cytokines (INF-γ, TNFα), and several B-cell associated factors (aproliferation-induced ligand, B-cell activating factor, C-X-C motif chemokine ligand 13) in CSF and serum
 - Tocilizumab (anti-IL-6 receptor antibody) is used offlabel for the treatment of AQP4-IgG seropositive NMOSD and MOGAD

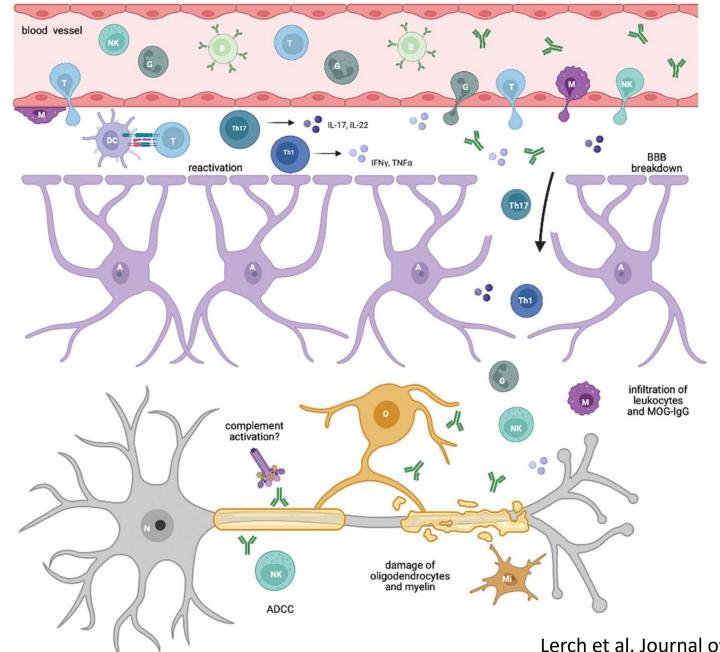
- Amplifies Th1 response
- Inhibits Th2 response
- · Activates classic macrophage
- · Drives isotype switching to IgG

- IL-4 amplifies Th2 response
- IL-4 and IL-10 inhibit Th1 response
- IL-5 drives eosinophil maturation
- Activates alternate macrophage
- IL-4 and IL-13 drive isotype switching to IgE and alternative macrophage activation
- + IL-5 and TGF- β drive isotype switching to IgA*


- IL-17 activates tissue cells and leukocytes to secrete inflammatory cytokines leading to recruitment of neutrophils
- IL-17 and IL-22 act on epithelial cells to secrete anti-microbials and improve barrier function

Proposed mechanisms of immune reaction and CNS injury

- Most MOG-IgG production is believed to take place in the periphery as oligoclonal CSF bands are missing in 90% of MOGAD patients
- Pathomechanism of MOG-IgG
 - Direct pathogenic effects to oligodendrocyte function and structure
 - Increased serum levels of complement products were found in MOGAD compared with MS, and NMOSD
 - After the transfer of human MOG-IgG cross-reactive to rodent MOG into different rat models, increased T-cell infiltration or complement deposition, together with MOG- or MBP-specific T cells


Proposed mechanisms of immune reaction and CNS injury

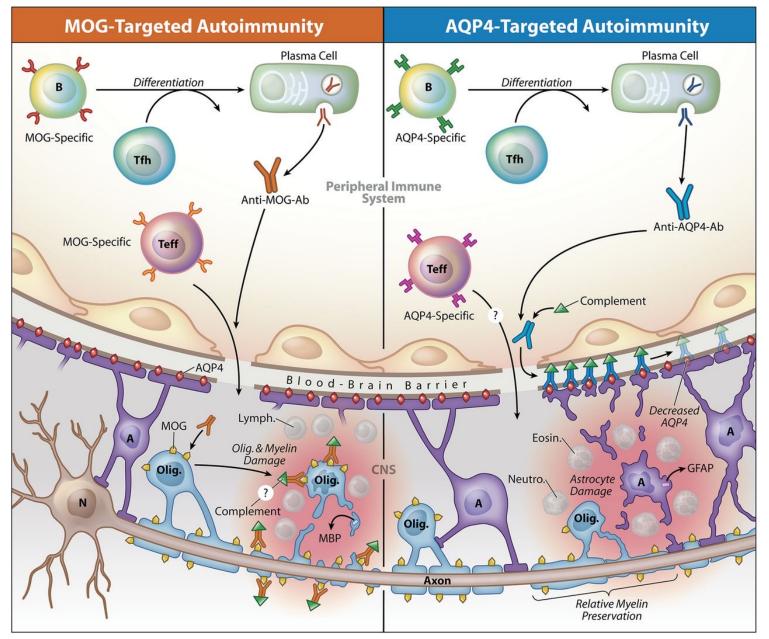
- Neuropathological examinations showed that infiltrating lymphocytes are mainly CD4+ T cells with only few B cells and CD8+ T cells
 - Macrophages and microglial cells were abundantly found within active demyelinating lesions
 - Low-to-moderate eosinophils and neutrophils
 - Relative axon sparing + reactive astrogliosis
 - Meningeal inflammation in 86%
 - **Complement activation** was concentrated in active lesions

Marignier et al. Lancet. 2021

Updates in MOGAD

Lerch et al. Journal of Neuroophthalmology. 2023

Structure & Pathogenesis

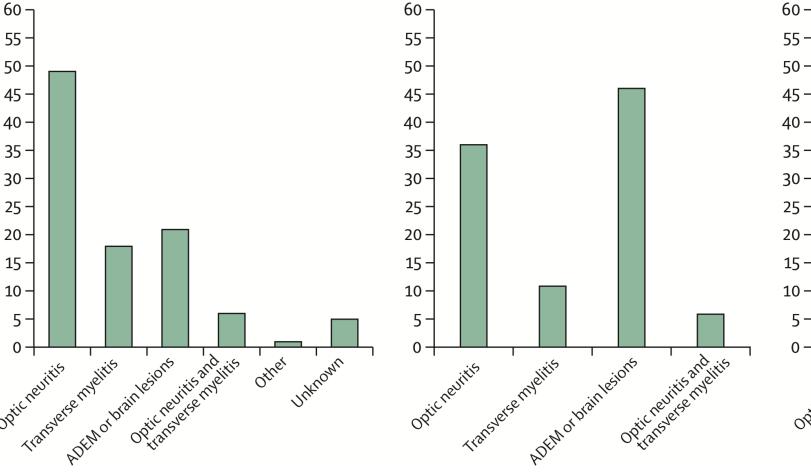

CSF markers

MOGAD

 Increased myelin basic protein (MBP)

NMOSD

- Increased MBP
- Increased GFAP


Zamvil et al. Neurology. 2015

Phenotypic classification

Common phenotypes

- Optic neuritis = the most common manifestation in **adults**
- ADEM +/- ON = the most common manifestation in children (age <11)
- Transverse myelitis
- Less common phenotypes
 - Cerebral cortical encephalitis
 - Brainstem and cerebellar demyelinating attacks
 - Tumefactive brain lesions
 - Cerebral monofocal and polyfocal CNS deficits associated demyelinating lesions
 - Cranial neuropathies
 - Progressive white matter damage (leukodystrophy-like pattern)

Adults (N=377)

Unknown

other

Children (N=176)

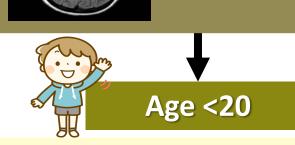
Β

Proportion of patients (%)

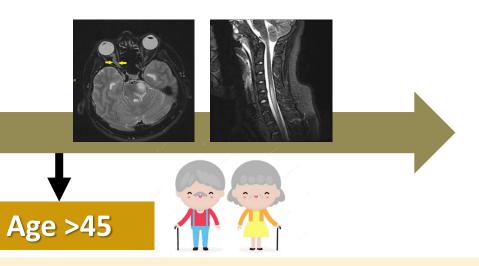
Transverse myelitis

Optic neuritis

Cumulative (N=1361)


Age-related clinical phenotypes

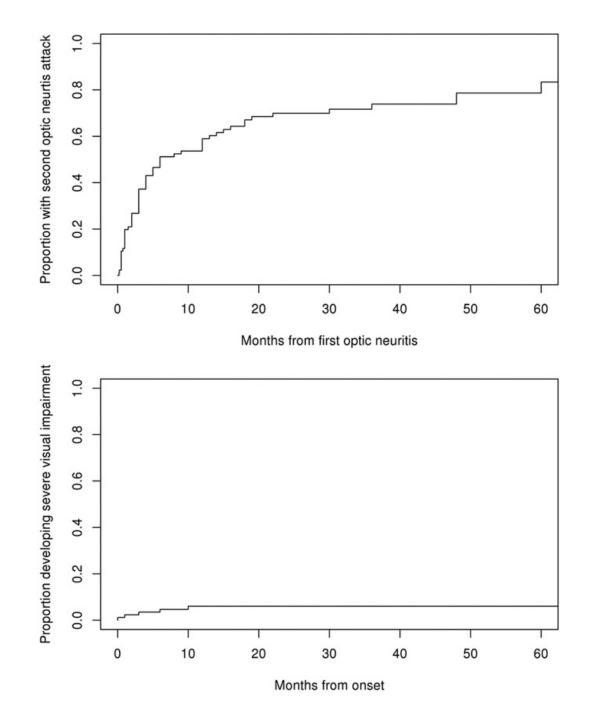
ADEMorbiainlesions


Transversenweittis

opticneutitis

Age-related phenotypes

- ADEM is the most common (36%)
- Better recovery
- 39% relapse rate


- ON/TM is the most common (>90%)
- More evere course
- Lack of responsiveness to DMT

Optic neuritis

- Clinical features
 - Central acuity loss and color vision loss
 - VA loss is often worse than 6/60 at nadir with rapid and dramatic improvement following acute corticosteroid therapy
 - Retro-orbital pain
 - Afferent pupillary defect
 - Bilateral ON is common at onset (31-58% vs <5% in MS and 13-37% in NMOSD)
 - Relapses is about 30-50% which can occur during corticosteroid weaning or shortly after cessation

• Optic disc swelling (45-95%) (usually moderate to severe)

Clinical features of ON and visual function of MOG-ON

- 87 MOG-IgG-seropositive patients with optic neuritis were included (Mayo Clinic, 76; other medical centers, 11)
- Average VA at nadir of worst attack was count fingers
- Average final VA was 20/30
- Optic disc edema and pain each occurred in 86% of patients
- Median duration of recurrent attack = 4 mo (annualized relapse rate 0.8)
- Severe visual loss <10%

Chen et al. Am J Ophathalmo. 2018

Visual function and recovery in patients with MOGAD, NMOSD and MS

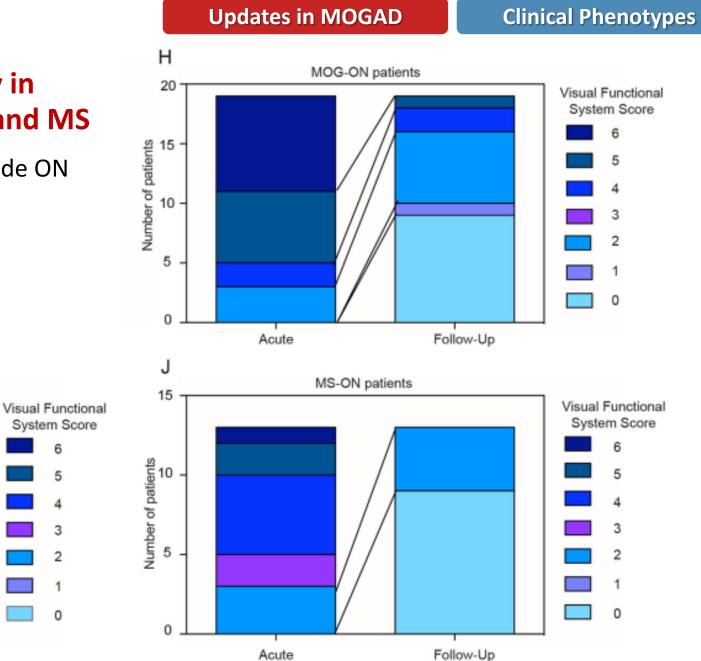
50 patients presenting with first-episode ON

AQP4-ON patients

Follow-Up

n

- MOG-ON (n = 19)۲
- AQP4-ON (n = 11)٠
- MS-ON (n = 13)•

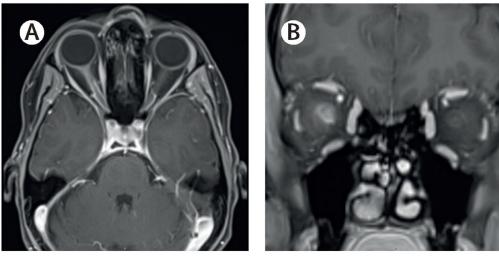

15

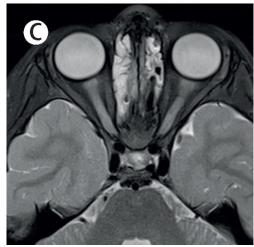
Number of patients 5

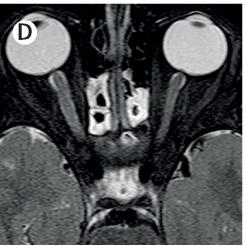
0

Unclassified ON (n = 7)٠

Acute

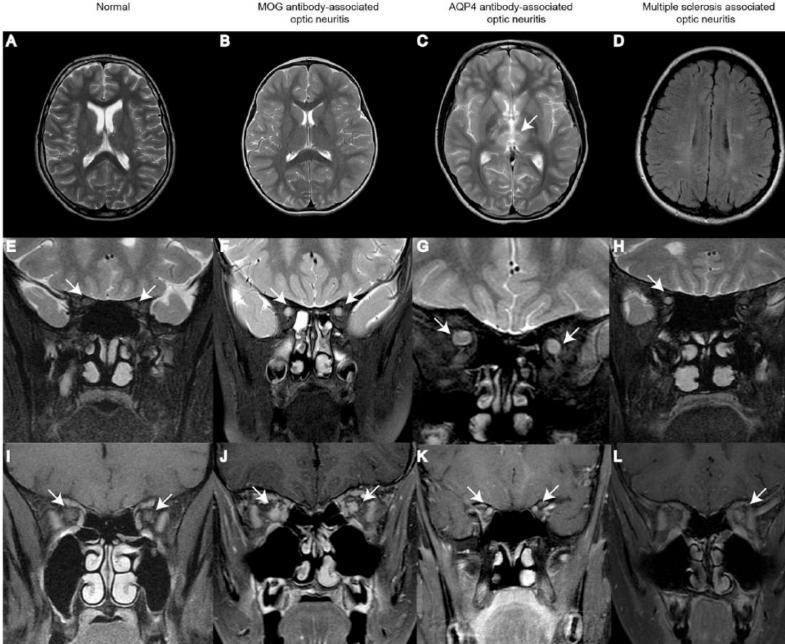



Clinical Phenotypes


Clinical Phenotypes of MOGAD

Optic neuritis

- MRI findings
 - Optic nerve head swelling
 - Lesion extent along the optic nerves
 >50% of length
 - Involvement of perineural tissue



T2 hyperintensity and laterality

MRI brain abnormalities

Updates in MOGAD

Clinical Phenotypes

A-D: Presence of MRI brain abnormalities

- No brain changes in a MOG-ON
- Bilateral thalamic and hypothalamic changes in an AQP4-ON
- WMH at periventricular area in an MS-ON

E-H: Coronal T2 hyperintensity of optic nerve

- Bilateral optic nerve T2 hyperintensity in a MOG-ON and AQP4-ON patient
- Unilateral right optic nerve T2 hyperintensity in an MS-ON

I-L: Optic nerve enhancement

- Bilateral retrobulbar enhancement + swelling in a MOG-ON
- Bilateral intracanalicular enhancement in an AQP4-ON
- Unilateral retrobulbar (Lt) enhancement in an MS-ON

Ramanathan et al. MS Journal. 2015

Norma

MOG antibody-associated optic neuritis

AQP4 antibody-associated optic neuritis

Multiple sclerosis associated optic neuritis

Updates in MOGAD

A-D: Optic nerve head swelling

- Bilateral optic nerve head swelling in a MOG-ON
- Absent optic nerve head swelling in an AQP4-ON and an MS-ON

E-H: Optic chiasmal involvement

- No chiasmal involvement in a MOG-ON and an MS-ON
- Chiasmal involvement in an AQP4-ON

I-L: Optic tract involvement

- No optic tract changes in a MOG-ON and MS-ON
- Bilateral optic tract involvement with T2 hyperintensity in an AQP4-ON

M-P: Extent of optic nerve involvement

- Bilateral longitudinally extensive optic nerve involvement in a MOG-ON and an AQP4-ON
- Unilateral focal involvement in an MS-ON

Transverse myelitis and spinal cord involvement

Clinical features

- **Presentations**: TM alone, ADEM with TM, TM with ON
- Clinical manifestations: sensory (pain, dysesthesia), motor, and sphincter disturbance and erectile dysfunction
 - Painful tonic spasms and severe neuropathic pain as an outcome is less common (more representative of myelitis associated with AQP4-IgG-seropositive NMOSD)
- Severity: varies, but typically moderate to severe at nadir (EDSS score >4) in >50%
- **Recovery**: **excellent motor recovery** (permanent bladder, bowel, or sexual dysfunction can occur)
- **Recurrence**: recurrent TM without demyelination elsewhere in the CNS are rare
- Silent lesion at cord, brain, or optic nerve can be found when an attack affect one site (cord, brain or optic nerve)
 - Silent brain or optic nerve lesions can be detected in 33-50% with clinical TM

Clinical myelitis in
MOGAD patients

- MOG-TM (n = 54)
- AQP4-TM (n = 46)
- MS-TM (n = 26)

	Up	Updates in MOGAD			Clinical Phenotypes		
			MOG-lgG vs AQP4-lgG <i>P</i>	MS Myelitis,	MOG-lgG vs MS		
Demographics	MOG-IgG	AQP4-IgG	Value ^a	No./Total No. (%)	P Value ^b		
Age (range), y	25 (3-73)	49.5 (15-75)	<.001	35 (18-59)	.007		
Children (<18 y)	16/54 (30)	2/46 (4)	.001	0/26	.002		
Female	24/54 (44)	39/46 (85)	<.001	20/26 (77)	.006		
White	50/54 (93)	32/46 (70)	.003	26/26 (100)	.15		
Clinical features							
Preceding viral-like prodrome or vaccination	33/54 (61)	3/46 (7)	<.001	0/26	<.001		
ADEM with myelitis	9/54 (17)	0/46	.004	0/26	.03		
History of intractable nausea and vomiting	5/54 (9)	9/46 (20)	.14	0/26	.11		
Neurogenic bowel/bladder	45/54 (83)	32/46 (69)	.10	8/26 (31)	<.001		
Erectile dysfunction	13/24 (54)	1/7 (14)	.06	0/6	.06		
Wheelchair dependent at attack nadir	18/54 (33)	15/46 (33)	.94	0/26	<.001		
CSF findings							
CSF elevated white blood cell count, >5 cells/µL	30/42 (71) ^c	21/24 (88)	.13	13/18 (72)	.81		
Markedly elevated CSF white blood cell count, >50 cells/µL	22/42 (52)	6/24 (25)	.03	0/18	<.001		
Elevated CSF protein, >50 mg/dL	30/42 (71)	16/24 (67)	.69	7/18 (39)	.02		
Elevated (≥4) oligoclonal bands	1/38 (3)	3/27 (11)	.16	16/18 (89)	<.001		

Dubey et al. JAMA Neurology. 2019

Transverse myelitis and spinal cord involvement

- LETM (≥3 or more vertebral segments) in >60% similar to NMOSD (but rare in MS)
- Conus involvement is more common (26% MOGAD vs 1.3% MS and 6% NMOSD)
- Centrally located on axial imaging (66-75%), and can be restricted to the grey matter (30-50%), producing the H-sign
- Contrast enhancement (50%)
- Thickening and contrast enhancement of the dorsal nerve roots
- Resolve or reduce in size substantially at follow-up
- Spinal cord atrophy in severe cases

10% normal at onset

Imaging features

Banwell et al. Lancet. 2023

Clinical Phenotypes

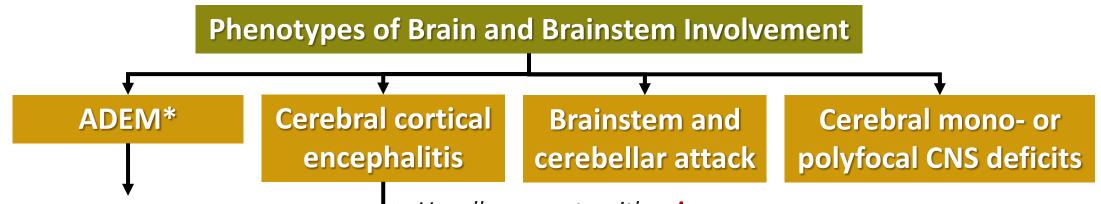
MRI features of myelitis in MOGAD patients

- MOG-TM (n = 54)
- AQP4-TM (n = 46)
- MS-TM (n = 26)

Clinical outcome

MRI spine features					
Longitudinally extensive sagittal T2 lesion (>3 vertebral segments)	37/47 (79)	28/34 (82)	.52	0/26	<.001
≥2 cord lesions	29/47 (62)	0/34	<.001	17/26 (65)	.76
Gadolinium enhancement	14/54 (26)	31/40 (78)	<.001	19/26 (73)	<.001
Concurrent H sign and linear sagittal hyperintensity	15/51 (29)	3/39 (8)	.007	0/26	.002
Involvement of conus	21/51 (41)	5/38 (13)	.004	5/15 (33)	.59
Clinical outcomes					
Gait aid at last follow-up	3/54 (6)	17/46 (37)	<.001	1/26 (4)	.74
mRS at last follow-up, median (range)	1 (0-4)	2 (0-6)	<.001	1 (0-4)	.61
Duration of follow-up, median (range), mo	24 (2-120)	34 (1-118)	.39	90 (1-166)	<.001

Table. Demographic, Clinical, and Magnetic Resonance Imaging (MRI) Characteristics Among Patients With MOG-Ab Disease or AQP4-Ab Disease (continued)


	Patients, No. (%)			
Characteristic	MOG-Ab Group (n = 46)	AQP4-Ab Group (n = 69)	P Value	
MRI features				
Spinal cord				
Short lesions only	11 (24)	8 (12)	.12	
Long lesions only	24 (52)	59 (86)	<.001	
Long and short lesions	11 (24)	2 (3)	<.001	
Total lesion length, mean (SD), vertebral levels	6.8 (6.5)	7.7 (5.2)	.38	
Single lesion	28 (61)	62 (90)	<.001	
Multiple lesions	18 (39)	7 (10)	<.001	
Conus involvement	18 (39)	8 (12)	.001	
Contrast enhancement, No./total No. (%)	17/24 (71)	38/48 (79)	.55	
Axial cord				
No.	16	24		
Central	12 (75)	17 (71)	>.99	
Lateral	3 (19)	3 (13)	.67	
Posterior	0	0	>.99	
Anterior	1 (6)	4 (17)	.63	
Brain				
No.	45	62		
Normal	19 (42)	47 (76)	<.001	
Brain lesion	24 (53)	14 (23)	<.001	
Brainstem lesion	11 (24)	11 (18)	.47	

MRI features of myelitis in MOGAD patients

- MOG-TM (n = 46)
- AQP4-TM (n = 69)

Mariano et al. JAMA Neurology. 2019

Brain and brainstem involvement

IPMSSG Criteria for ADEM

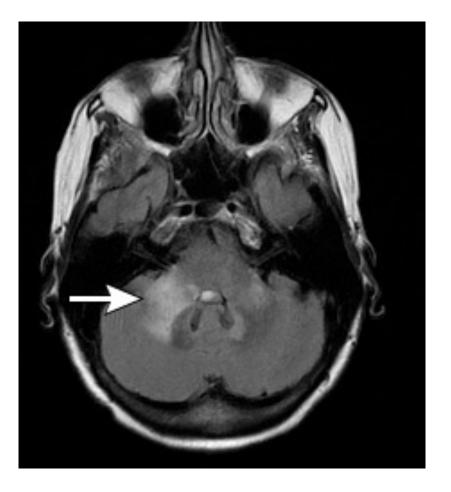
➡ Usually presents with seizure

- First attack of CNS inflam + multifocal + polysymptomatic + encephalopathy (acute behavioral change or AOC) + subsequent improvement + no other causes
- Characteristic MRI
 - Brain: large (>1-2 cm) multifocal (bilateral asymmetric), hyperSI WM lesion ± hemorrhage ± deep GM involvement (no prior destructive lesion)
 - **Cord**: confluent intramedullary ± enhancement

Other phenotypes

- Leukodystrophy-like pattern
- Tumefactive brain lesions (which can lead to brain herniation)
- Cranial neuropathies
- Silent lesions in pts with ON/TM

Clinical Phenotypes

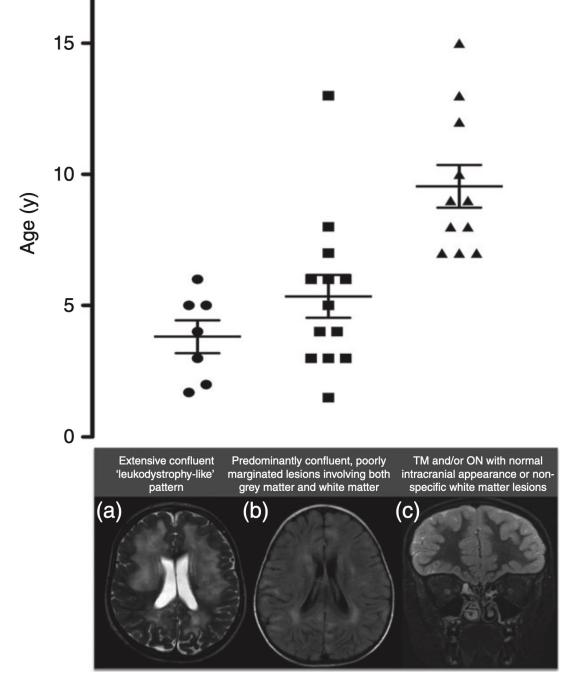

Clinical Phenotypes of MOGAD

Brain and brainstem involvement

 In patients with ON or TM: MRI brain T2hyperintense lesions are absent in 47-68% (whereas in MS, MRI brain is normal in only 8-16%)

Characteristic imaging features

- Bilateral, ill-defined, and large, often with deep grey matter and pons involvement, no black holes (= persistent T1-hypointense lesions) and no MS features
- Large middle cerebellar peduncle lesion* (rare in MS or AQP4-IgG-seropositive NMOSD)

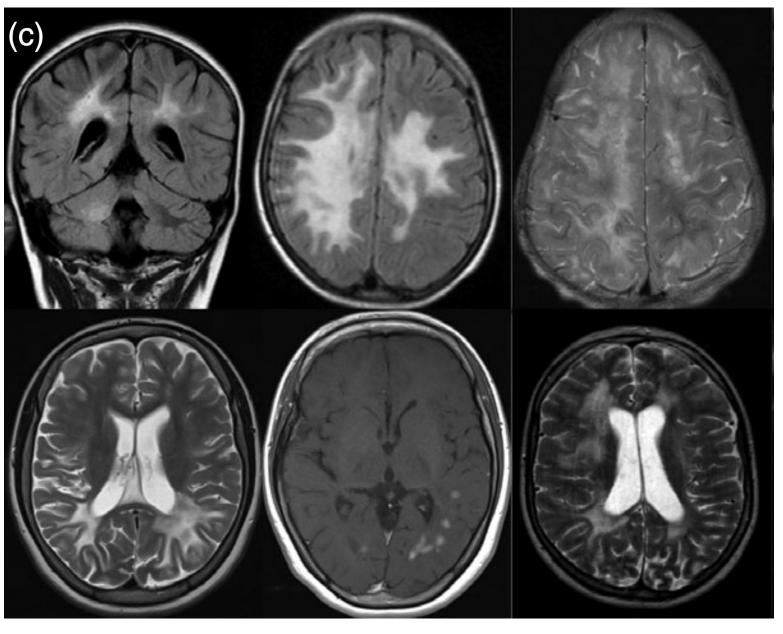


Brain and brainstem involvement

ADEM

- **ADEM in pediatrics** = 50% MOG-IgG positive (lower positivity in adults) especially if **age <10 years**
 - Children with ADEM and MOG-IgG are on average 2-3 years younger than children with seronegative ADEM
 - Preceded by an infectious episode (mainly respiratory) and fever (40-75%)
 - 70% complete (or almost complete) clinical and radiological resolution but poorer in leukodystrophy-like brain imaging pattern
- **ADEM in adults** = presenting syndrome in only 5.6% MOGAD adult patients
- TM and ataxia occur more commonly in MOG-IgG-positive ADEM (than in seronegative ADEM)

Age-related presentation of MOG-IgG positive ADEM

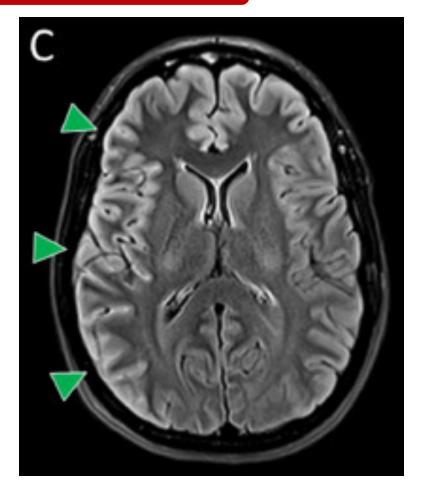

Figure 1: Association between age at onset and magnetic resonance imaging patterns in myelin oligodendrocyte glycoprotein antibody-associated disease. The box-plot (showing median and interquartile range) demonstrates the relationship between the predominant imaging pattern and the age group. (a) The 'leukodystrophy-like' pattern was predominantly seen in younger children; (b) confluent, hazy/poorly marginated lesions involving both grey and white matter were seen in the middle-age group; (c) the spinal cord/optic nerve (ON) involvement with normal or non-specific brain imaging was seen in the older group. TM, transverse myelitis.

Hacohen et al. Developmental Medicine & Child Neurology . 2018

Updates in MOGAD

Clinical Phenotypes

MOG-IgG positive ADEM with leukodystrophy-like pattern on MRI brain


Hacohen et al. Developmental Medicine & Child Neurology . 2018

Clinical Phenotypes of MOGAD

Brain and brainstem involvement

- Occurs in 6.7% (19 of 285) patients with MOG-IgG
- Presentation: fever, headache, reduced consciousness, seizures (focal or generalized), or status epilepticus
 - Symptoms of raised intracranial pressure can also occur and can be life-threatening
 - FLAMES (FLAIR hyperintense lesions in anti-MOG encephalitis with seizures) = cortical lesions with MOG-IgG and seizures (which are more apparent with FLAIR sequences)
 - Overlying leptomeningeal enhancement (89%)
- NMDAR Ab should be tested (co-positive in 4-7.5%)

Cerebral cortical encephalitis

Budhram et al. MS and Related Disorders. 2020

Clinical Phenotypes of MOGAD

Relapses

Definition

- a new clinical attack occurring >30 days following onset of a previous attack
 - More common in the **first 6 months** than later after the first attack
 - Relapses can occur within 2 months following oral corticosteroid therapy tapering or cessation
 - Cluster of early relapses may occur
- Relapses in adults: 2 studies showed similar relapse risks
 - 16 (36%) of 44 patients with a median follow-up of 15.5 months
 - 37 (27%) of 139 patients with a median follow-up of 10.78 months
 - Relapse risk was greatest over the first few months from the initial attack (but the follow-up duration was short)

Clinical Phenotypes of MOGAD

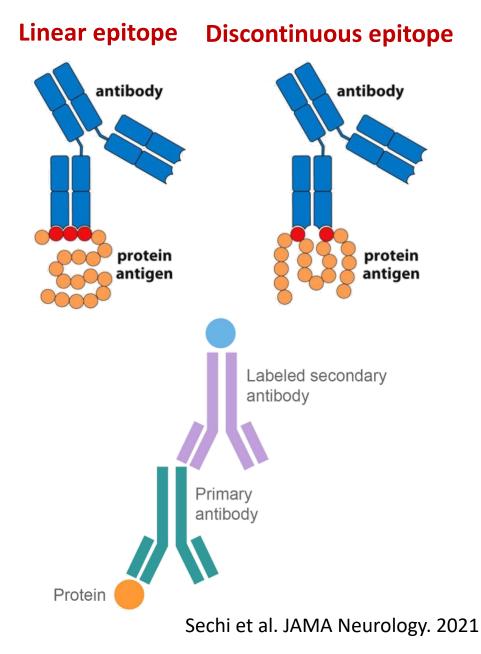
Relapses

• **Relapses in pediatrics**: 17-20% of the 200 patients experienced relapsing disease over a median observation period of 1-7 years (the median time to first relapse was 11 months)

Study with longer follow up (UK): 183 patients with MOG-IgG (68 pediatric onset and 115 adult onset) followed for a median of 24.4 months (range 1.2-235.1 months), the 4-year risk of relapse was 31.7% and the 8-year risk was 36.3%

Summary

Relapse rate of MOGAD is about 27-37% over the first 1-2 years Risk of relapse is higher in ON and NMOSD phenotypes

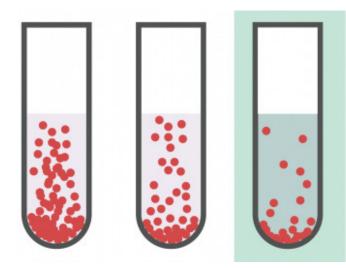


Banwell et al. Lancet. 2023

MOG-lgG testing

Method

- As pathogenic MOG IgG is conformational (discontinuous) epitope antibodies, cellbased assay (with full-length human MOG) is more sensitive and specific
 - Live CBA is preferred (to fixed CBA which carries lower Se and Sp)
- Serum is preferred specimen type for MOG-IgG testing (positive CSF alone = 3-4%; paired serum-CSF positive in 42-89%)
- MOG-IgG are IgG1: IgG1 Fc secondary Ab is recommended


MOG-lgG testing

Method

- Titer or semi-quantitative results should be reported (rationale: higher titers are more reproducible)
- An international, multicenter, blinded comparative study of 7 live cell-based assays from 4 centers: excellent interlaboratory agreement for clear positive results whereas low positive samples were more frequently discordant
- PPV for clinical features consistent with MOGAD increased with increasing titer of MOG-IgG

Definition of clear positive

- Live CBA: at least two doubling dilutions above the assay cutoff
- Fixed CBA: titers \geq 1:100

MOG-lgG testing

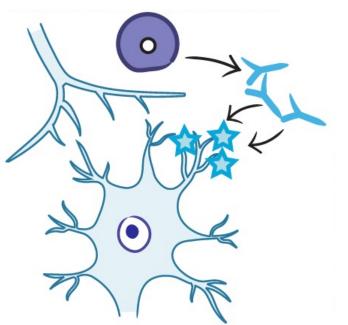
 Highest likelihood of MOG-IgG seropositivity when tested at the time of attack, ideally before treatment with of steroids, IVIg, or apheresis (as observed in AQP4-IgG testing)

 If initial testing was negative but obtained after administration of acute therapies → repeat at 3 months or at the time of relapse

- Seroconversion from negative to positive is extremely rare if initial test at the onset is negative
- Repeated testing if initial positive: persistent positivity is associated with an increased risk of relapse by a factor of 2-10 (timing at 6 mo?)

CSF analysis

- CSF pleocytosis: WBC >5 per μL, occurs in >50% in the first attack of MOGAD (12% have >100 WBC/HPF) especially in ADEM or TM (less common in ON alone)
- **CSF protein**: elevated in 30% of patients with a first demyelinating attack and MOG-IgG (not different from other neuroinflammatory disorders)
- **CSF OCB**: strongly favor a diagnosis of MS (but can be detected transiently in up to **20% of MOGAD**)
- **CSF Ab to measles, rubella, and VZV**: absent in MOGAD but very common in MS



Other antibody testing

 MOG-IgG and AQP4-IgG: dual positivity is very rare, and when it occurs, the AQP4-IgG titers are nearly always high whereas the MOG-IgG titers are low

- MOG-IgG + anti-NMDAR Ab: can be found in MOGAD and anti-NMDA receptor encephalitis overlap syndrome
 - History of episodes of encephalitis or demyelination, or can have concurrent serum MOG-IgG and CSF NMDA receptor antibodies and manifest with clinical features of anti-NMDA receptor encephalitis (including encephalopathy, psychosis, seizures, and dyskinesias) + clinical and MRI features of CNS demyelination

Diagnosis

Diagnostic criteria

(A) Core clinical demyelinating event

- Optic neuritis
- Myelitis
- ADEM
- Cerebral monofocal or polyfocal deficits
- Brainstem or cerebellar deficits
- Cerebral cortical encephalitis with seizures

(B) Positive MOG-lgG test

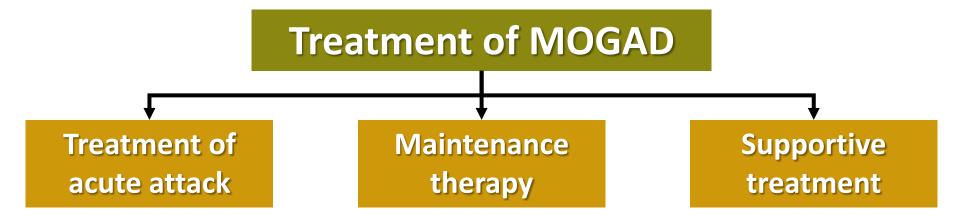
- Clear positive in serum
- Low positive or positive without reported titer or CSF positive alone requires the following:
 - Negative AQP4-lgG
 - At least 1 supportive features of ON, TM

(C) Exclusion of better diagnosis including MS

Supporting features

- ON: bilat, longitudinal (>50%), perioptic sheath enhancement, disc edema)
- **Myelitis**: LETM, central lesion or Hsign, conus
- Brain/brainstem:
 - Multiple ill-defined T2 lesions in supratent + infratent WM
 - Deep gray involvement
 - Ill-defined T2 lesions at pons, MCP, or medulla
 - Cortical lesion + meningeal enhancement

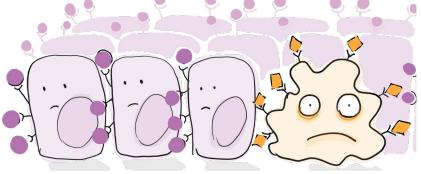
Diagnosis

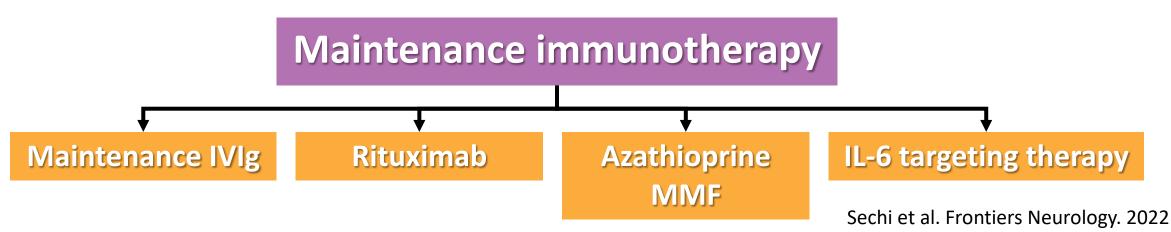

Red flag against MOGAD

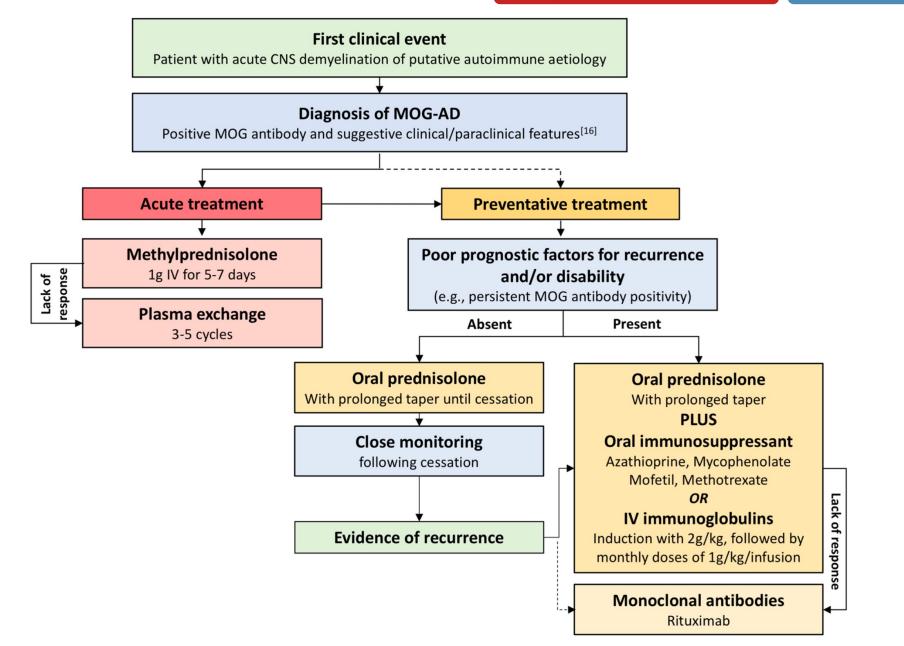
- Progressive course
- Rapid worsening within minutes to hours
- No improvement with high-dose corticosteroid therapy
- MRI with MS features
- Positive OCB
- Persistent contrast enhancement

General principles


- There are **no RCTs** available in MOGAD
- Existing recommendations for treatment are mostly derived from data on AQP4-IgG+NMOSD, and retrospective studies
- Some drugs that are typically very effective in AQP4 IgG+NMOSD, such as rituximab, seem less effective in MOGAD


Treatment of acute attacks


- **High dose corticosteroids**: most patients respond briskly (earlier treatment may lead to better outcomes)
 - **Dosage**: IVMP 1 g OD for 5 days or oral prednisone 1250 mg/d for 5 days
- PLEX: early IV corticosteroids + PLEX 5-7 exchanges every other day in patients with severe attacks and high disability at attack nadir is reasonable
- IVIg: limited data in MOGAD attacks but may represent a reasonable treatment option after PLEX in very severe/refractory cases
 - **Dosage**: 0.4 g/Kg/day for 5 days



Maintenance therapy

- Attack-prevention therapy is offered to those that have had 2 or more attacks, but not initiated after the first attack to avoid over treatment of monophasic disease (which is about 40-50%)
 - Exceptions in patients with severe residual deficits following the presenting attack, to prevent further disability

Wynford-Thomas et al. Journal of Neurology. 2018

Supportive treatment

- Chronic pain and depression (with strong correlation with each other) have been reported in up to 51 and 42% of patients with MOGAD, respectively
- Mechanisms: neuropathic, spasticity-associated, and/or painful tonic spasms
- **Treatment**: non-opioid analgesics, antidepressants (e.g., duloxetine), and antiepileptic agents (e.g., gabapentin, pregabalin)
 - Painful tonic spasms generally respond well to low dose carbamazepine (200-300 mg/day)
 - Immunosuppressive treatment has also been reported to improve pain
 - **Muscle relaxants** (e.g., baclofen, benzodiazepines) and physical rehabilitation should be offered for spasticity

		Updates in MOGAD		Summary
Summary				
Epidemiology	No sex and race predilection		Unknown genetic?	
Pathogenesis	Outside-in	B cell + Th cell	MOG-IgG	
	Complement activation	Oligodendrocyte injury	Demyelination	
Clinical features	ON (adults)	ТМ	Brain	
	Bilateral	Central, H-sign	ADEM <mark>(children)</mark>	
	Retrobulbar	LETM	Cerebral cortical encephalitis	
	Peri-optic involvement	Conus medullaris	Brainstem or cerebellar (MCP lesion, <mark>no MS signs</mark>)	
Diagnosis	Core clinical features	Serum MOG-IgG (<mark>CBA</mark>)	No MS features	
Treatment	IVMP for acute attacks	DMT for recurrent or high-risk pts	Suppo	ortive treatment

